Number of ways of writing N as a sum of 4 squares

Given a number N, the task is to find the number of ways of writing N as a sum of 4 squares. Two representations are considered different if their terms are in a different order or if the integer being squared (not just the square) is different.
Examples:
Input : n=1
Output :8
12 + 02 + 02 + 02
02 + 12 + 02 + 02
02 + 02 + 12 + 02
02 + 02 + 02 + 12
Similarly there are 4 other possible permutations by replacing 1 with -1
Hence there are 8 possible ways.Input :n=5
Output :48
Approach:
Jacobi’s four-square theorem states that the number of ways of writing n as a sum of 4 squares is 8 times the sum of divisor of n if n is odd and is 24 times the sum of odd divisor of n if n is even.Find the sum of odd and even divisor of n by running a loop from 1 to sqrt(n) .
C++
// C++ implementation of above approach#include <bits/stdc++.h>using namespace std;// Number of ways of writing n// as a sum of 4 squaresint sum_of_4_squares(int n){ // sum of odd and even factor int i, odd = 0, even = 0; // iterate from 1 to the number for (i = 1; i <= sqrt(n); i++) { // if i is the factor of n if (n % i == 0) { // if factor is even if (i % 2 == 0) even += i; // if factor is odd else odd += i; // n/i is also a factor if ((n / i) != i) { // if factor is even if ((n / i) % 2 == 0) even += (n / i); // if factor is odd else odd += (n / i); } } } // if n is odd if (n % 2 == 1) return 8 * (odd + even); // if n is even else return 24 * (odd);}// Driver codeint main(){ int n = 4; cout << sum_of_4_squares(n); return 0;} |
Java
// Java implementation of above approachimport java.io.*;class GFG{ // Number of ways of writing n// as a sum of 4 squaresstatic int sum_of_4_squares(int n){ // sum of odd and even factor int i, odd = 0, even = 0; // iterate from 1 to the number for (i = 1; i <= Math.sqrt(n); i++) { // if i is the factor of n if (n % i == 0) { // if factor is even if (i % 2 == 0) even += i; // if factor is odd else odd += i; // n/i is also a factor if ((n / i) != i) { // if factor is even if ((n / i) % 2 == 0) even += (n / i); // if factor is odd else odd += (n / i); } } } // if n is odd if (n % 2 == 1) return 8 * (odd + even); // if n is even else return 24 * (odd);} // Driver code public static void main (String[] args) { int n = 4; System.out.println (sum_of_4_squares(n)); }}// This code is contributed by tushil. |
Python3
# Python3 implementation of above approach# Number of ways of writing n# as a sum of 4 squaresdef sum_of_4_squares(n): # sum of odd and even factor i, odd, even = 0,0,0 # iterate from 1 to the number for i in range(1,int(n**(.5))+1): # if i is the factor of n if (n % i == 0): # if factor is even if (i % 2 == 0): even += i # if factor is odd else: odd += i # n/i is also a factor if ((n // i) != i): # if factor is even if ((n // i) % 2 == 0): even += (n // i) # if factor is odd else: odd += (n // i) # if n is odd if (n % 2 == 1): return 8 * (odd + even) # if n is even else : return 24 * (odd)# Driver coden = 4print(sum_of_4_squares(n))# This code is contributed by mohit kumar 29 |
C#
// C# implementation of above approachusing System;class GFG{ // Number of ways of writing n// as a sum of 4 squaresstatic int sum_of_4_squares(int n){ // sum of odd and even factor int i, odd = 0, even = 0; // iterate from 1 to the number for (i = 1; i <= Math.Sqrt(n); i++) { // if i is the factor of n if (n % i == 0) { // if factor is even if (i % 2 == 0) even += i; // if factor is odd else odd += i; // n/i is also a factor if ((n / i) != i) { // if factor is even if ((n / i) % 2 == 0) even += (n / i); // if factor is odd else odd += (n / i); } } } // if n is odd if (n % 2 == 1) return 8 * (odd + even); // if n is even else return 24 * (odd);}// Driver codestatic public void Main (){ int n = 4; Console.WriteLine(sum_of_4_squares(n));}}// This code is contributed by ajit. |
Javascript
<script>// Javascript implementation of above approach// Number of ways of writing n// as a sum of 4 squaresfunction sum_of_4_squares(n){ // Sum of odd and even factor var i, odd = 0, even = 0; // Iterate from 1 to the number for(i = 1; i <= Math.sqrt(n); i++) { // If i is the factor of n if (n % i == 0) { // If factor is even if (i % 2 == 0) even += i; // If factor is odd else odd += i; // n/i is also a factor if ((n / i) != i) { // If factor is even if ((n / i) % 2 == 0) even += (n / i); // If factor is odd else odd += (n / i); } } } // If n is odd if (n % 2 == 1) return 8 * (odd + even); // If n is even else return 24 * (odd);}// Driver codevar n = 4;document.write(sum_of_4_squares(n));// This code is contributed by SoumikMondal</script> |
24
Time Complexity : O(sqrt(N))
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



