Find n positive integers that satisfy the given equations

Given three integers N, X, and Y. The task is to find N positive integers that satisfy the given equations.
- a12 + a22 + …. + an2 ? X
- a1 + a2 + …. + an ? Y
If no such sequence of integers is possible then print -1.
Examples:
Input: N = 3, X = 254, Y = 18
Output: 1 1 16
12 + 12 + 162 = 1 + 1 + 256 = 258 which is ? X
1 + 1 + 16 = 18 which is ? YInput: N = 2, X = 3, Y = 2
Output: -1
No such sequence exists.
Approach: It is easy to see that in order to maximize the sum of squares, one should make all numbers except the first one equal to 1 and maximize the first number. Keeping this in mind we only need to check whether the given value of y is large enough to satisfy a restriction that all n numbers are positive. If y is not too small, then all we need is to ensure that X ? 1 + 1 + … + (y – (n – 1))2.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to find n positive integers// that satisfy the given conditionsvoid findIntegers(int n, int x, int y){ // To store n positive integers vector<int> ans; // Place N - 1 one's for (int i = 0; i < n - 1; i++) ans.push_back(1); // If can not place (y - (n - 1)) // as the Nth integer if (y - (n - 1) <= 0) { cout << "-1"; return; } // Place Nth integer ans.push_back(y - (n - 1)); // To store the sum of // squares of N integers int store = 0; for (int i = 0; i < n; i++) store += ans[i] * ans[i]; // If it is less than x if (store < x) { cout << "-1"; return; } // Print the required integers for (int i = 0; i < n; i++) cout << ans[i] << " ";}// Driver codeint main(){ int n = 3, x = 254, y = 18; findIntegers(n, x, y); return 0;} |
Java
// Java implementation of the approachimport java.util.*;class GFG{ // Function to find n positive integers// that satisfy the given conditionsstatic void findIntegers(int n, int x, int y){ // To store n positive integers ArrayList<Integer> ans = new ArrayList<Integer>(); // Place N - 1 one's for (int i = 0; i < n - 1; i++) ans.add(1); // If can not place (y - (n - 1)) // as the Nth integer if (y - (n - 1) <= 0) { System.out.print("-1"); return; } // Place Nth integer ans.add(y - (n - 1)); // To store the sum of // squares of N integers int store = 0; for (int i = 0; i < n; i++) store += ans.get(i) * ans.get(i); // If it is less than x if (store < x) { System.out.print("-1"); return; } // Print the required integers for (int i = 0; i < n; i++) System.out.print(ans.get(i)+" ");}// Driver codepublic static void main (String[] args) { int n = 3, x = 254, y = 18; findIntegers(n, x, y);}}// This code is contributed by mits |
Python3
# Python3 implementation of the approach# Function to find n positive integers# that satisfy the given conditionsdef findIntegers(n, x, y): # To store n positive integers ans = [] # Place N - 1 one's for i in range(n - 1): ans.append(1) # If can not place (y - (n - 1)) # as the Nth integer if (y - (n - 1) <= 0): print("-1", end = "") return # Place Nth integer ans.append(y - (n - 1)) # To store the sum of # squares of N integers store = 0 for i in range(n): store += ans[i] * ans[i] # If it is less than x if (store < x): print("-1", end = "") return; # Print the required integers for i in range(n): print(ans[i], end = " ")# Driver coden, x, y = 3, 254, 18findIntegers(n, x, y)# This code is contributed by mohit kumar |
C#
// C# implementation of the approachusing System;using System.Collections;class GFG{ // Function to find n positive integers// that satisfy the given conditionsstatic void findIntegers(int n, int x, int y){ // To store n positive integers ArrayList ans = new ArrayList(); // Place N - 1 one's for (int i = 0; i < n - 1; i++) ans.Add(1); // If can not place (y - (n - 1)) // as the Nth integer if (y - (n - 1) <= 0) { Console.Write("-1"); return; } // Place Nth integer ans.Add(y - (n - 1)); // To store the sum of // squares of N integers int store = 0; for (int i = 0; i < n; i++) store += (int)ans[i] *(int)ans[i]; // If it is less than x if (store < x) { Console.Write("-1"); return; } // Print the required integers for (int i = 0; i < n; i++) Console.Write((int)ans[i]+" ");}// Driver codestatic void Main() { int n = 3, x = 254, y = 18; findIntegers(n, x, y);}}// This code is contributed by mits |
PHP
<?php// Php implementation of the approach // Function to find n positive integers // that satisfy the given conditions function findIntegers($n, $x, $y) { // To store n positive integers $ans = array(); // Place N - 1 one's for ($i = 0; $i < $n - 1; $i++) array_push($ans,1) ; // If can not place (y - (n - 1)) // as the Nth integer if ($y - ($n - 1) <= 0) { echo "-1"; return; } // Place Nth integer array_push($ans,$y - ($n - 1)); // To store the sum of // squares of N integers $store = 0; for ($i = 0; $i < $n; $i++) $store += $ans[$i] * $ans[$i]; // If it is less than x if ($store < $x) { echo "-1"; return; } // Print the required integers for ($i = 0; $i < $n; $i++) echo $ans[$i]," "; } // Driver code $n = 3; $x = 254; $y = 18; findIntegers($n, $x, $y); // This code is contributed by Ryuga?> |
Javascript
<script>// JavaScript implementation of the approach// Function to find n positive integers// that satisfy the given conditionsfunction findIntegers(n, x, y){ // To store n positive integers let ans = []; // Place N - 1 one's for (let i = 0; i < n - 1; i++) ans.push(1); // If can not place (y - (n - 1)) // as the Nth integer if (y - (n - 1) <= 0) { document.write("-1"); return; } // Place Nth integer ans.push(y - (n - 1)); // To store the sum of // squares of N integers let store = 0; for (let i = 0; i < n; i++) store += ans[i] * ans[i]; // If it is less than x if (store < x) { document.write("-1"); return; } // Print the required integers for (let i = 0; i < n; i++) document.write(ans[(i)]+" ");} // Driver Code let n = 3, x = 254, y = 18; findIntegers(n, x, y); </script> |
1 1 16
Time Complexity: O(n)
Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



