Print rectangular pattern with given center

Given 3 positive integer c1, c2 and n, where n is size of 2-D square matrix. The task is to print the matrix filled with rectangular pattern having center coordinates  c1, c2 such that 0 <= c1, c2 < n.

Examples:

Input: c1 = 2, c2 = 2, n = 5
Output:
2 2 2 2 2  
2 1 1 1 2  
2 1 0 1 2  
2 1 1 1 2  
2 2 2 2 2 

Input: c1 = 3, c2 = 4, n = 7 
Output:
4 3 3 3 3 3 3 
4 3 2 2 2 2 2 
4 3 2 1 1 1 2 
4 3 2 1 0 1 2 
4 3 2 1 1 1 2 
4 3 2 2 2 2 2 
4 3 3 3 3 3 3 

 

Approach: This problem can be solved by using two nested loops. Follow the steps below to solve this problem:

  • Iterate in the range[0, N-1], using a variable i and do the following steps:
    • Iterate in the range[0, N-1], using a variable j and do the following steps:
      • Print maximum of abs(c1 – i) and abs(c2 – j).
    • Print new line.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to print the matrix filled
// with rectangle pattern having center
// coordinates are c1, c2
 
void printRectPattern(int c1, int c2, int n)
{
 
    // Iterate in the range[0, n-1]
    for (int i = 0; i < n; i++) {
        // Iterate in the range[0, n-1]
        for (int j = 0; j < n; j++) {
            cout << (max(abs(c1 - i), abs(c2 - j))) << " ";
        }
        cout << endl;
    }
}
// Driver Code
 
int main()
{
 
    // Given Input
    int c1 = 2;
    int c2 = 2;
    int n = 5;
 
    // Function Call
    printRectPattern(c1, c2, n);
    // This code is contributed by Potta Lokesh
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
 
// Function to print the matrix filled
// with rectangle pattern having center
// coordinates are c1, c2
static void printRectPattern(int c1, int c2, int n)
{
     
    // Iterate in the range[0, n-1]
    for(int i = 0; i < n; i++)
    {
         
        // Iterate in the range[0, n-1]
        for(int j = 0; j < n; j++)
        {
            System.out.print((Math.max(Math.abs(c1 - i),
                              Math.abs(c2 - j))) + " ");
        }
        System.out.println();
    }
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given Input
    int c1 = 2;
    int c2 = 2;
    int n = 5;
     
    // Function Call
    printRectPattern(c1, c2, n);
}
}
 
// This code is contributed by sanjoy_62


Python3




# Python3 program for the above approach
 
# Function to print the matrix filled
# with rectangle pattern having center
# coordinates are c1, c2
 
 
def printRectPattern(c1, c2, n):
 
    # Iterate in the range[0, n-1]
    for i in range(n):
        # Iterate in the range[0, n-1]
        for j in range(n):
            print(max(abs(c1 - i), abs(c2 - j)), end = " ")
        print("")
 
 
# Driver Code
 
# Given Input
c1 = 2
c2 = 2
n = 5
 
# Function Call
printRectPattern(c1, c2, n)


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to print the matrix filled
// with rectangle pattern having center
// coordinates are c1, c2
static void printRectPattern(int c1, int c2, int n)
{
     
    // Iterate in the range[0, n-1]
    for(int i = 0; i < n; i++)
    {
         
        // Iterate in the range[0, n-1]
        for(int j = 0; j < n; j++)
        {
            Console.Write((Math.Max(Math.Abs(c1 - i),
                           Math.Abs(c2 - j))) + " ");
        }
        Console.WriteLine();
    }
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given Input
    int c1 = 2;
    int c2 = 2;
    int n = 5;
     
    // Function Call
    printRectPattern(c1, c2, n);
}
}
 
// This code is contributed by target_2


Javascript




<script>
// Javascript program for the above approach
 
// Function to print the matrix filled
// with rectangle pattern having center
// coordinates are c1, c2
function printRectPattern(c1, c2, n) {
 
    // Iterate in the range[0, n-1]
    for (let i = 0; i < n; i++)
    {
     
        // Iterate in the range[0, n-1]
        for (let j = 0; j < n; j++) {
            document.write(Math.max(Math.abs(c1 - i), Math.abs(c2 - j)) + " ");
        }
        document.write("<br>");
    }
}
 
// Driver Code
 
// Given Input
let c1 = 2;
let c2 = 2;
let n = 5;
 
// Function Call
printRectPattern(c1, c2, n);
 
    // This code is contributed by gfgking
</script>


Output: 

2 2 2 2 2 
2 1 1 1 2 
2 1 0 1 2 
2 1 1 1 2 
2 2 2 2 2

 

Time Complexity: O(N ^2)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button