Chen Prime Number

Given a positive integer n, the task is to check if it is a Chen prime number. If the given number is a Chen Prime number then print ‘YES’ otherwise print ‘NO’.
Chen prime Number: In mathematics, a Prime number ‘p’ is called as chen prime number , if either ‘p+2’ is a prime number or a semi prime number.
A semi-prime number is product of two prime numbers.
The first few Chen prime numbers are:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101
Examples:
Input : 11
Output: YES
Explanation:
11 is prime number and 11+2
(i.e 13 is also prime number)Input : 7
Output: YES
Explanation:
7 is prime number and 7+2
( i.e 9 ) is a semi prime number
Prerequisite:
Approach:
- Check if the given number – ‘n’ is a prime or not.
- If n is a prime number:
- Check if n+2 is either prime or semi-prime
- Print ‘YES’ if n+2 is either prime number or a semi-prime number
- Otherwise print ‘NO’
- If n is not a prime number, print ‘NO’.
Below is the implementation of the above idea
CPP
// CPP program to check// Chen prime number#include <bits/stdc++.h>using namespace std;// Utility function to check whether// number is semiprime or notint isSemiprime(int num){ int cnt = 0; for (int i = 2; cnt < 2 && i * i <= num; ++i) while (num % i == 0) num /= i, ++cnt; // Increment count // of prime numbers // If number is greater than 1, add it to // the count variable as it indicates the // number remain is prime number if (num > 1) ++cnt; // Return '1' if count is equal to '2' else // return '0' return cnt == 2;}// Utility function to check whether// the given number is prime or notbool isPrime(int n){ // Corner cases if (n <= 1) return false; if (n <= 3) return true; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) { if (n % i == 0 || n % (i + 2) == 0) { return false; } } return true;}// Function to check Chen prime numberbool isChenPrime(int n){ if (isPrime(n) && (isSemiprime(n + 2) || isPrime(n + 2))) return true; else return false;}// Driver codeint main(){ int n = 7; if (isChenPrime(n)) cout << "YES"; else cout << "NO"; return 0;} |
Java
// JAVA program to check// Chen Prime numberclass GFG { // Utility function to check // if the given number is semi-prime or not static boolean isSemiPrime(int num) { int cnt = 0; for (int i = 2; cnt < 2 && i * i <= num; ++i) while (num % i == 0) { num /= i; // Increment count // of prime numbers ++cnt; } // If number is greater than 1, // add it to the count variable // as it indicates the number // remain is prime number if (num > 1) ++cnt; // Return '1' if count is equal // to '2' else return '0' return cnt == 2 ? true : false; } // Function to check if a number is prime or not static boolean isPrime(int n) { // Corner cases if (n <= 1) return false; if (n <= 3) return true; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) { if (n % i == 0 || n % (i + 2) == 0) { return false; } } return true; } // Function to check chen prime number static boolean isChenPrime(int n) { if (isPrime(n) && (isSemiPrime(n + 2) || isPrime(n + 2))) return true; else return false; } // Driver code public static void main(String[] args) { int n = 7; if (isChenPrime(n)) System.out.println("YES"); else System.out.println("NO"); }} |
C#
// C# program to check// Chen Prime numberusing System;class GFG { // Utility function to check // if the given number is semi-prime or not static bool isSemiPrime(int num) { int cnt = 0; for (int i = 2; cnt < 2 && i * i <= num; ++i) while (num % i == 0) { num /= i; // Increment count // of prime numbers ++cnt; } // If number is greater than 1, // add it to the count variable // as it indicates the number // remain is prime number if (num > 1) ++cnt; // Return '1' if count is equal // to '2' else return '0' return cnt == 2 ? true : false; } // Function to check if a number is prime or not static bool isPrime(int n) { // Corner cases if (n <= 1) return false; if (n <= 3) return true; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) { if (n % i == 0 || n % (i + 2) == 0) { return false; } } return true; } // Function to check chen prime number static bool isChenPrime(int n) { if (isPrime(n) && (isSemiPrime(n + 2) || isPrime(n + 2))) return true; else return false; } // Driver code public static void Main() { int n = 7; if (isChenPrime(n)) Console.WriteLine("YES"); else Console.WriteLine("NO"); }} |
Python3
# Python3 program to check# Chen Prime numberimport math # Utility function to Check # Semi-prime number def isSemiPrime(num): cnt = 0 for i in range(2, int(math.sqrt(num)) + 1): while num % i == 0: num /= i cnt += 1 # Increment count # of prime number # If count is greater than 2, # break loop if cnt >= 2: break # If number is greater than 1, add it to # the count variable as it indicates the # number remain is prime number if(num > 1): cnt += 1 # Return '1' if count is equal to '2' else # return '0' return cnt == 2 # Utility function to check # if a number is prime or not def isPrime(n) : # Corner cases if (n <= 1) : return False if (n <= 3) : return True # This is checked so that we can skip # middle five numbers in below loop if (n % 2 == 0 or n % 3 == 0) : return False i = 5 while(i * i <= n) : if (n % i == 0 or n % (i + 2) == 0) : return False i = i + 6 return True # Function to check if the# Given number is Chen prime number or not def isChenPrime( n): if(isPrime(n) and (isSemiPrime(n + 2) or isPrime(n + 2))): return True else: return False # Driver coden = 7if(isChenPrime(n)): print("YES");else: print("NO"); |
Javascript
<script>// Javascript program to check// Chen prime number// Utility function to check whether// number is semiprime or notfunction isSemiprime(num){ var cnt = 0; for (var i = 2; cnt < 2 && i * i <= num; ++i) while (num % i == 0) num /= i, ++cnt; // Increment count // of prime numbers // If number is greater than 1, add it to // the count variable as it indicates the // number remain is prime number if (num > 1) ++cnt; // Return '1' if count is equal to '2' else // return '0' return cnt == 2;}// Utility function to check whether// the given number is prime or notfunction isPrime(n){ // Corner cases if (n <= 1) return false; if (n <= 3) return true; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false; for (var i = 5; i * i <= n; i = i + 6) { if (n % i == 0 || n % (i + 2) == 0) { return false; } } return true;}// Function to check Chen prime numberfunction isChenPrime(n){ if (isPrime(n) && (isSemiprime(n + 2) || isPrime(n + 2))) return true; else return false;}// Driver codevar n = 7;if (isChenPrime(n)) document.write( "YES");else document.write( "NO");// This code is contributed by noob2000.</script> |
YES
Time Complexity: O(?n)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



