Sum and Product of Prime Frequencies of Characters in a String

Given a string str containing only lowercase English alphabets, the task is to find the sum and product of all the prime frequencies of the characters in str.
Examples:
Input: str = “zambiatek”
Output: 6, 8
Only characters ‘g’, ‘k’ and ‘s’ have prime frequencies i.e. 2 + 2 + 2 = 6 and 2 * 2* 2 = 8
Character frequency g 2 e 4 k 2 s 2 f 1 o 1 r 1 Input: str = “algorithms”
Output: 0, 0
Approach:
- Traverse the string and store the frequencies of all the characters in a hash table.
- Find the frequencies which are prime using Sieve Of Eratosthenes.
- Calculate the sum and product of all of these prime frequencies and finally print the sum and product.
Below is the implementation of the above approach:
C++
// C++ program to find Sum and product of Prime// Frequencies of Characters in a String#include <bits/stdc++.h>using namespace std;// Function to create Sieve to check primesvoid SieveOfEratosthenes(bool prime[], int p_size){ // false here indicates // that it is not prime prime[0] = false; prime[1] = false; for (int p = 2; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for (int i = p * 2; i <= p_size; i += p) prime[i] = false; } }}// Function to find the sum of prime frequencies// of the characters of the given stringvoid sumProdOfPrimeFreq(string s){ bool prime[s.length() + 1]; memset(prime, true, sizeof(prime)); SieveOfEratosthenes(prime, s.length() + 1); int i, j; // map is used to store // character frequencies unordered_map<char, int> m; for (i = 0; i < s.length(); i++) m[s[i]]++; int sum = 0, product = 1; // Traverse the map for (auto it = m.begin(); it != m.end(); it++) { // If the frequency is prime if (prime[it->second]) { sum += it->second; product *= it->second; } } cout << "Sum = " << sum; cout << "\nProduct = " << product;}// Driver codeint main(){ string s = "zambiatek"; sumProdOfPrimeFreq(s); return 0;} |
Java
// Java program to find Sum and product of Prime// Frequencies of Characters in a Stringimport java.util.*;class GFG { // Function to create Sieve to check primes static void SieveOfEratosthenes(boolean prime[], int p_size) { // false here indicates // that it is not prime prime[0] = false; prime[1] = false; for (int p = 2; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for (int i = p * 2; i < p_size; i += p) { prime[i] = false; } } } } // Function to find the sum of prime frequencies // of the characters of the given string static void sumProdOfPrimeFreq(char[] s) { boolean[] prime = new boolean[s.length + 1]; Arrays.fill(prime, true); SieveOfEratosthenes(prime, s.length + 1); int i, j; // map is used to store // character frequencies Map<Character, Integer> mp = new HashMap<>(); for (i = 0; i < s.length; i++) { mp.put(s[i], mp.get(s[i]) == null ? 1 : mp.get(s[i]) + 1); } int sum = 0, product = 1; // Traverse the map for (Map.Entry<Character, Integer> it : mp.entrySet()) { // If the frequency is prime if (prime[it.getValue()]) { sum += it.getValue(); product *= it.getValue(); } } System.out.print("Sum = " + sum); System.out.println("\nProduct = " + product); } // Driver code public static void main(String[] args) { String s = "zambiatek"; sumProdOfPrimeFreq(s.toCharArray()); }}// This code is contributed by 29AjayKumar |
Python3
# Python3 program to find Sum and product of Prime# Frequencies of Characters in a String# Function to create Sieve to check primesdef SieveofEratosthenes(prime, p_size): # false here indicates # that it is not prime prime[0] = False prime[1] = False for p in range(2, p_size + 1): # If prime[p] is not changed, # then it is a prime if prime[p]: # Update all multiples of p, # set them to non-prime for i in range(p * 2, p_size + 1, p): prime[i] = False# Function to find the sum of prime frequencies# of the characters of the given stringdef sumProdOfPrimeFreq(s): prime = [True] * (len(s) + 2) SieveofEratosthenes(prime, len(s) + 1) i = 0 j = 0 # map is used to store # character frequencies m = dict() for i in range(len(s)): m[s[i]] = (m[s[i]] + 1) if s[i] in m else 1 s = 0 product = 1 # Traverse the map for it in m: # If the frequency is prime if prime[m[it]]: s += m[it] product *= m[it] print("Sum =", s) print("Product =", product)# Driver codeif __name__ == "__main__": s = "zambiatek" sumProdOfPrimeFreq(s)# This code is contributed by# sanjeev2552 |
C#
// C# program to find Sum and product of Prime// Frequencies of Characters in a Stringusing System;using System.Collections.Generic;class GFG { // Function to create Sieve to check primes static void SieveOfEratosthenes(bool []prime, int p_size) { // false here indicates // that it is not prime prime[0] = false; prime[1] = false; for (int p = 2; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for (int i = p * 2; i < p_size; i += p) { prime[i] = false; } } } } // Function to find the sum of prime frequencies // of the characters of the given string static void sumProdOfPrimeFreq(char[] s) { int i; bool[] prime = new bool[s.Length + 1]; for(i=0;i<s.Length + 1;i++){ prime[i]=true; } SieveOfEratosthenes(prime, s.Length + 1); // map is used to store // character frequencies Dictionary<char, int> mp = new Dictionary<char, int>(); for (i = 0 ; i < s.Length; i++) { if(mp.ContainsKey(s[i])) { var val = mp[s[i]]; mp.Remove(s[i]); mp.Add(s[i], val + 1); } else { mp.Add(s[i], 1); } } int sum = 0, product = 1; // Traverse the map foreach(KeyValuePair<char, int> it in mp) { // If the frequency is prime if (prime[it.Value]) { sum += it.Value; product *= it.Value; } } Console.Write("Sum = " + sum); Console.WriteLine("\nProduct = " + product); } // Driver code public static void Main(String[] args) { String s = "zambiatek"; sumProdOfPrimeFreq(s.ToCharArray()); }}// This code is contributed by Princi Singh |
Javascript
<script>// Javascript program to find Sum and product of Prime// Frequencies of Characters in a String// Function to create Sieve to check primesfunction SieveOfEratosthenes(prime, p_size) { // false here indicates // that it is not prime prime[0] = false; prime[1] = false; for (let p = 2; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for (let i = p * 2; i <= p_size; i += p) prime[i] = false; } }}// Function to find the sum of prime frequencies// of the characters of the given stringfunction sumProdOfPrimeFreq(s) { let prime = new Array(s.length + 1); prime.fill(true); SieveOfEratosthenes(prime, s.length + 1); let i, j; // map is used to store // character frequencies let m = new Map(); for (i = 0; i < s.length; i++) m.set(s[i], m.get(s[i]) == null ? 1 : m.get(s[i]) + 1); let sum = 0, product = 1; // Traverse the map for (let it of m) { console.log(m) // If the frequency is prime if (prime[it[1]]) { sum += it[1]; product *= it[1]; } } document.write("Sum = " + sum); document.write("<br>Product = " + product);}// Driver codelet s = "zambiatek";sumProdOfPrimeFreq(s);// This code is contributed by gfgking</script> |
Output
Sum = 6 Product = 8
Complexity Analysis:
- Time Complexity: O(N*log(logN)), where N is the length of the given string.
- Auxiliary Space: O(N), since N extra space has been taken.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



