Area of a n-sided regular polygon with given Radius

Given a regular polygon of N sides with radius(distance from the center to any vertex) R. The task is to find the area of the polygon.
Examples:
Input : r = 9, N = 6 Output : 210.444 Input : r = 8, N = 7 Output : 232.571
In the figure, we see that the polygon can be divided into N equal triangles.
Looking into one of the triangles, we see that the whole angle at the centre can be divided into = 360/N parts.
So, angle t = 180/N.
Looking into one of the triangles, we see,
h = rcost a = rsint
We know,
area of the triangle = (base * height)/2
= r2sin(t)cos(t)
= r2*sin(2t)/2
So, area of the polygon:
A = n * (area of one triangle) = n*r2*sin(2t)/2 = n*r2*sin(360/n)/2
Below is the implementation of the above approach:
C++
// C++ Program to find the area// of a regular polygon with given radius#include <bits/stdc++.h>using namespace std;// Function to find the area// of a regular polygonfloat polyarea(float n, float r){ // Side and radius cannot be negative if (r < 0 && n < 0) return -1; // Area // degree converted to radians float A = ((r * r * n) * sin((360 / n) * 3.14159 / 180)) / 2; return A;}// Driver codeint main(){ float r = 9, n = 6; cout << polyarea(n, r) << endl; return 0;} |
Java
// Java Program to find the area// of a regular polygon with given radiusimport java.util.*;class GFG{ // Function to find the area // of a regular polygon static double polyarea(double n, double r) { // Side and radius cannot be negative if (r < 0 && n < 0) return -1; // Area // degree converted to radians double A = ((r * r * n) * Math.sin((360 / n) * 3.14159 / 180)) / 2; return A; } // Driver code public static void main(String []args) { float r = 9, n = 6; System.out.println(polyarea(n, r)); }}// This code is contributed// By ihritik (Hritik Raj) |
Python3
# Python3 Program to find the area # of a regular polygon with given radius # form math lib import sin functionfrom math import sin# Function to find the area # of a regular polygon def polyarea(n, r) : # Side and radius cannot be negative if (r < 0 and n < 0) : return -1 # Area # degree converted to radians A = (((r * r * n) * sin((360 / n) * 3.14159 / 180)) / 2); return round(A, 3)# Driver code if __name__ == "__main__" : r, n = 9, 6 print(polyarea(n, r))# This code is contributed by Ryuga |
C#
// C# Program to find the area// of a regular polygon with given radiususing System;class GFG{ // Function to find the area // of a regular polygon static double polyarea(double n, double r) { // Side and radius cannot be negative if (r < 0 && n < 0) return -1; // Area // degree converted to radians double A = ((r * r * n) * Math.Sin((360 / n) * 3.14159 / 180)) / 2; return A; } // Driver code public static void Main() { float r = 9, n = 6; Console.WriteLine(polyarea(n, r)); }}// This code is contributed// By ihritik (Hritik Raj) |
PHP
<?php // PHP Program to find the area of a// regular polygon with given radius// Function to find the area// of a regular polygonfunction polyarea($n, $r){ // Side and radius cannot be negative if ($r < 0 && $n < 0) return -1; // Area // degree converted to radians $A = (($r * $r * $n) * sin((360 / $n) * 3.14159 / 180)) / 2; return $A;}// Driver code$r = 9;$n = 6;echo polyarea($n, $r)."\n";// This code is contributed by ita_c?> |
Javascript
<script>// javascript Program to find the area// of a regular polygon with given radius// Function to find the area// of a regular polygonfunction polyarea(n , r){ // Side and radius cannot be negative if (r < 0 && n < 0) return -1; // Area // degree converted to radians var A = ((r * r * n) * Math.sin((360 / n) * 3.14159 / 180)) / 2; return A;}// Driver codevar r = 9, n = 6;document.write(polyarea(n, r).toFixed(5));// This code contributed by Princi Singh </script> |
Output:
210.444
Time Complexity: O(1)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




