Maximum LCM among all pairs (i, j) of first N natural numbers

Given a positive integer N > 1, the task is to find the maximum LCM among all the pairs (i, j) such that i < j ? N.
Examples:
Input: N = 3
Output: 6
LCM(1, 2) = 2
LCM(1, 3) = 3
LCM(2, 3) = 6
Input: N = 4
Output: 12
Approach: Since the LCM of two consecutive elements is equal to their multiples then it is obvious that the maximum LCM will be of the pair (N, N – 1) i.e. (N * (N – 1)).
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to return the maximum LCM// among all the pairs(i, j) of// first n natural numbersint maxLCM(int n){ return (n * (n - 1));}// Driver codeint main(){ int n = 3; cout << maxLCM(n); return 0;} |
Java
// Java implementation of the approachclass GFG{ // Function to return the maximum LCM// among all the pairs(i, j) of// first n natural numbersstatic int maxLCM(int n){ return (n * (n - 1));}// Driver codepublic static void main(String[] args){ int n = 3; System.out.println(maxLCM(n));}}// This code is contributed by Code_Mech |
Python3
# Python3 implementation of the approach # Function to return the maximum LCM # among all the pairs(i, j) of # first n natural numbers def maxLCM(n) : return (n * (n - 1)); # Driver code if __name__ == "__main__" : n = 3; print(maxLCM(n)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; class GFG{ // Function to return the maximum LCM// among all the pairs(i, j) of// first n natural numbersstatic int maxLCM(int n){ return (n * (n - 1));}// Driver codepublic static void Main(String[] args){ int n = 3; Console.WriteLine(maxLCM(n));}}// This code is contributed by Rajput-Ji |
Javascript
<script>// Javascript implementation of the approach// Function to return the maximum LCM// among all the pairs(i, j) of// first n natural numbersfunction maxLCM(n){ return (n * (n - 1));}// Driver codevar n = 3;document.write(maxLCM(n));</script> |
Output:
6
Time Complexity: O(1)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



