Number of pairs with a given sum in a Binary Search Tree

Given a Binary Search Tree, and a number X. The task is to find the number of distinct pairs of distinct nodes in BST with a sum equal to X. No two nodes have the same values.
Examples:
Input : X = 5
5
/ \
3 7
/ \ / \
2 4 6 8
Output : 1
{2, 3} is the only possible pair.
Thus, the answer is equal to 1.
Input : X = 6
1
\
2
\
3
\
4
\
5
Output : 2
Possible pairs are {{1, 5}, {2, 4}}.
Naive Approach: The idea is to hash all the elements of BST or convert the BST to a sorted array. After that find the number of pairs using the algorithm given here.
Time Complexity: O(N).
Space Complexity: O(N).
Space Optimized Approach : The idea is to use two pointer technique on BST. Maintain forward and backward iterators that will iterate the BST in the order of in-order and reverse in-order traversal respectively.
- Create forward and backward iterators for BST. Let’s say that the value of nodes they are pointing at are equal to v1 and v2 respectively.
- Now at each step,
- If v1 + v2 = X, the pair is found, thus increase the count by 1.
- If v1 + v2 is less than or equal to x, we will make forward iterator point to the next element.
- If v1 + v2 is greater than x, we will make backward iterator point to the previous element.
- Repeat the above steps until both iterators don’t point to the same node.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Node of Binary treestruct node { int data; node* left; node* right; node(int data) { this->data = data; left = NULL; right = NULL; }};// Function to find a pairint cntPairs(node* root, int x){ // Stack to store nodes for // forward and backward iterator stack<node *> it1, it2; // Initializing forward iterator node* c = root; while (c != NULL) it1.push(c), c = c->left; // Initializing backward iterator c = root; while (c != NULL) it2.push(c), c = c->right; // Variable to store final answer int ans = 0; // two pointer technique while (it1.top() != it2.top()) { // Variables to store the // value of the nodes current // iterators are pointing to. int v1 = it1.top()->data; int v2 = it2.top()->data; // If we find a pair // then count is increased by 1 if (v1 + v2 == x) ans++; // Moving forward iterator if (v1 + v2 <= x) { c = it1.top()->right; it1.pop(); while (c != NULL) it1.push(c), c = c->left; } // Moving backward iterator else { c = it2.top()->left; it2.pop(); while (c != NULL) it2.push(c), c = c->right; } } // Returning final answer return ans;}// Driver codeint main(){ /* 5 / \ 3 7 / \ / \ 2 4 6 8 */ node* root = new node(5); root->left = new node(3); root->right = new node(7); root->left->left = new node(2); root->left->right = new node(4); root->right->left = new node(6); root->right->right = new node(8); int x = 10; cout << cntPairs(root, x); return 0;} |
Java
// Java implementation of the approachimport java.util.*;class GFG{// Node of Binary treestatic class node{ int data; node left; node right; node(int data) { this.data = data; left = null; right = null; }};// Function to find a pairstatic int cntPairs(node root, int x){ // Stack to store nodes for // forward and backward iterator Stack<node > it1 = new Stack<>(); Stack<node > it2 = new Stack<>(); // Initializing forward iterator node c = root; while (c != null) { it1.push(c); c = c.left; } // Initializing backward iterator c = root; while (c != null) { it2.push(c); c = c.right; } // Variable to store final answer int ans = 0; // two pointer technique while (it1.peek() != it2.peek()) { // Variables to store the // value of the nodes current // iterators are pointing to. int v1 = it1.peek().data; int v2 = it2.peek().data; // If we find a pair // then count is increased by 1 if (v1 + v2 == x) ans++; // Moving forward iterator if (v1 + v2 <= x) { c = it1.peek().right; it1.pop(); while (c != null) { it1.push(c); c = c.left; } } // Moving backward iterator else { c = it2.peek().left; it2.pop(); while (c != null) { it2.push(c); c = c.right; } } } // Returning final answer return ans;}// Driver codepublic static void main(String[] args){ /* 5 / \ 3 7 / \ / \ 2 4 6 8 */ node root = new node(5); root.left = new node(3); root.right = new node(7); root.left.left = new node(2); root.left.right = new node(4); root.right.left = new node(6); root.right.right = new node(8); int x = 10; System.out.print(cntPairs(root, x));}}// This code is contributed by Rajput-Ji |
Python3
# Python implementation of above algorithm# Utility class to create a node class node: def __init__(self, key): self.data = key self.left = self.right = None# Function to find a pairdef cntPairs( root, x): # Stack to store nodes for # forward and backward iterator it1 = [] it2 = [] # Initializing forward iterator c = root while (c != None): it1.append(c) c = c.left # Initializing backward iterator c = root while (c != None): it2.append(c) c = c.right # Variable to store final answer ans = 0 # two pointer technique while (it1[-1] != it2[-1]) : # Variables to store the # value of the nodes current # iterators are pointing to. v1 = it1[-1].data v2 = it2[-1].data # If we find a pair # then count is increased by 1 if (v1 + v2 == x): ans=ans+1 # Moving forward iterator if (v1 + v2 <= x) : c = it1[-1].right it1.pop() while (c != None): it1.append(c) c = c.left # Moving backward iterator else : c = it2[-1].left it2.pop() while (c != None): it2.append(c) c = c.right # Returning final answer return ans# Driver code# 5 # / \ # 3 7 # / \ / \ # 2 4 6 8 root = node(5)root.left = node(3)root.right = node(7)root.left.left = node(2)root.left.right = node(4)root.right.left = node(6)root.right.right = node(8)x = 10print(cntPairs(root, x))# This code is contributed by Arnab Kundu |
C#
// C# implementation of the approachusing System;using System.Collections.Generic;class GFG{// Node of Binary treepublic class node{ public int data; public node left; public node right; public node(int data) { this.data = data; left = null; right = null; }};// Function to find a pairstatic int cntPairs(node root, int x){ // Stack to store nodes for // forward and backward iterator Stack<node > it1 = new Stack<node>(); Stack<node > it2 = new Stack<node>(); // Initializing forward iterator node c = root; while (c != null) { it1.Push(c); c = c.left; } // Initializing backward iterator c = root; while (c != null) { it2.Push(c); c = c.right; } // Variable to store readonly answer int ans = 0; // two pointer technique while (it1.Peek() != it2.Peek()) { // Variables to store the // value of the nodes current // iterators are pointing to. int v1 = it1.Peek().data; int v2 = it2.Peek().data; // If we find a pair // then count is increased by 1 if (v1 + v2 == x) ans++; // Moving forward iterator if (v1 + v2 <= x) { c = it1.Peek().right; it1.Pop(); while (c != null) { it1.Push(c); c = c.left; } } // Moving backward iterator else { c = it2.Peek().left; it2.Pop(); while (c != null) { it2.Push(c); c = c.right; } } } // Returning readonly answer return ans;}// Driver codepublic static void Main(String[] args){ /* 5 / \ 3 7 / \ / \ 2 4 6 8 */ node root = new node(5); root.left = new node(3); root.right = new node(7); root.left.left = new node(2); root.left.right = new node(4); root.right.left = new node(6); root.right.right = new node(8); int x = 10; Console.Write(cntPairs(root, x));}}// This code is contributed by Rajput-Ji |
Javascript
<script>// Javascript implementation of the approach// Node of Binary treeclass node{ constructor(data) { this.data = data; this.left = null; this.right = null; }};// Function to find a pairfunction cntPairs(root, x){ // Stack to store nodes for // forward and backward iterator var it1 = []; var it2 = []; // Initializing forward iterator var c = root; while (c != null) { it1.push(c); c = c.left; } // Initializing backward iterator c = root; while (c != null) { it2.push(c); c = c.right; } // Variable to store readonly answer var ans = 0; // two pointer technique while (it1[it1.length - 1] != it2[it2.length - 1]) { // Variables to store the // value of the nodes current // iterators are pointing to. var v1 = it1[it1.length - 1].data; var v2 = it2[it2.length - 1].data; // If we find a pair // then count is increased by 1 if (v1 + v2 == x) ans++; // Moving forward iterator if (v1 + v2 <= x) { c = it1[it1.length - 1].right; it1.pop(); while (c != null) { it1.push(c); c = c.left; } } // Moving backward iterator else { c = it2[it2.length - 1].left; it2.pop(); while (c != null) { it2.push(c); c = c.right; } } } // Returning readonly answer return ans;}// Driver code/* 5 / \ 3 7 / \ / \ 2 4 6 8 */var root = new node(5);root.left = new node(3);root.right = new node(7);root.left.left = new node(2);root.left.right = new node(4);root.right.left = new node(6);root.right.right = new node(8);var x = 10;document.write(cntPairs(root, x));// This code is contributed by noob2000</script> |
3
Time complexity: O(N)
Space complexity: O(H) where H is the height of BST
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



