Radius of the biggest possible circle inscribed in rhombus which in turn is inscribed in a rectangle

Give a rectangle with length l & breadth b, which inscribes a rhombus, which in turn inscribes a circle. The task is to find the radius of this circle.
Examples:
Input: l = 5, b = 3 Output: 1.28624 Input: l = 6, b = 4 Output: 1.6641
Approach: From the figure, it is clear that diagonals, x & y, are equal to the length and breadth of the rectangle.
Also radius of the circle, r, inside a rhombus is = xy/2?(x^2+y^2).
So, radius of the circle in terms of l & b is = lb/2?(l^2+b^2).
Below is the implementation of the above approach:
C++
// C++ implementation of above approach#include <bits/stdc++.h>using namespace std;// Function to find the radius// of the inscribed circlefloat circleradius(float l, float b){ // the sides cannot be negative if (l < 0 || b < 0) return -1; // radius of the circle float r = (l * b) / (2 * sqrt((pow(l, 2) + pow(b, 2)))); return r;}// Driver codeint main(){ float l = 5, b = 3; cout << circleradius(l, b) << endl; return 0;} |
Java
// Java implementation of above approachimport java.io.*;class GFG { // Function to find the radius// of the inscribed circlestatic float circleradius(float l, float b){ // the sides cannot be negative if (l < 0 || b < 0) return -1; // radius of the circle float r = (float)((l * b) / (2 * Math.sqrt((Math.pow(l, 2) + Math.pow(b, 2))))); return r;} // Driver code public static void main (String[] args) { float l = 5, b = 3; System.out.print (circleradius(l, b)) ; }}// This code is contributed by inder_verma.. |
Python3
# Python 3 implementation of # above approachfrom math import sqrt# Function to find the radius# of the inscribed circledef circleradius(l, b): # the sides cannot be negative if (l < 0 or b < 0): return -1 # radius of the circle r = (l * b) / (2 * sqrt((pow(l, 2) + pow(b, 2)))); return r# Driver codeif __name__ == '__main__': l = 5 b = 3 print("{0:.5}" . format(circleradius(l, b)))# This code is contribute # by Surendra_Gagwar |
C#
// C# implementation of above approachusing System;class GFG { // Function to find the radius// of the inscribed circlestatic float circleradius(float l, float b){ // the sides cannot be negative if (l < 0 || b < 0) return -1; // radius of the circle float r = (float)((l * b) / (2 * Math.Sqrt((Math.Pow(l, 2) + Math.Pow(b, 2))))); return r;}// Driver codepublic static void Main () { float l = 5, b = 3; Console.WriteLine(circleradius(l, b));}}// This code is contributed// by inder_verma |
PHP
<?php// PHP implementation of above approach // Function to find the radius // of the inscribed circle function circleradius($l, $b) { // the sides cannot be negative if ($l < 0 || $b < 0) return -1; // radius of the circle $r = ($l * $b) / (2 * sqrt((pow($l, 2) + pow($b, 2)))); return $r; } // Driver code $l = 5;$b = 3; echo circleradius($l, $b), "\n"; // This code is contributed by ajit ?> |
Javascript
<script>// javascript implementation of above approach// Function to find the radius// of the inscribed circlefunction circleradius(l , b){ // the sides cannot be negative if (l < 0 || b < 0) return -1; // radius of the circle var r = ((l * b) / (2 * Math.sqrt((Math.pow(l, 2) + Math.pow(b, 2))))); return r;}var l = 5, b = 3;document.write(circleradius(l, b).toFixed(5)) ;// This code is contributed by shikhasingrajput </script> |
Output:
1.28624
Time complexity: O(logn) as it is using inbuilt sqrt function
Auxiliary Space: O(1) since using constant variables
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




