Previous perfect square and cube number smaller than number N

Given an integer N, the task is to find the previous perfect square or perfect cube smaller than the number N.
Examples:
Input: N = 6
Output:
Perfect Square = 4
Perfect Cube = 1Input: N = 30
Output:
Perfect Square = 25
Perfect Cube = 27
Approach: Previous perfect square number less than N can be computed as follows:
- Find the square root of given number N.
- Calculate its floor value using floor function of the respective language.
- Then subtract 1 from it if N is already a perfect square.
- Print square of that number.
Previous perfect cube number less than N can be computed as follows:
- Find the cube root of given N.
- Calculate its floor value using floor function of the respective language.
- Then subtract 1 from it if N is already a perfect cube.
- Print cube of that number.
Below is the implementation of above approach:
C++
// C++ implementation to find the// previous perfect square and cube// smaller than the given number#include <cmath>#include <iostream>using namespace std;// Function to find the previous// perfect square of the number Nint previousPerfectSquare(int N){ int prevN = floor(sqrt(N)); // If N is already a perfect square // decrease prevN by 1. if (prevN * prevN == N) prevN -= 1; return prevN * prevN;}// Function to find the // previous perfect cubeint previousPerfectCube(int N){ int prevN = floor(cbrt(N)); // If N is already a perfect cube // decrease prevN by 1. if (prevN * prevN * prevN == N) prevN -= 1; return prevN * prevN * prevN;}// Driver Codeint main(){ int n = 30; cout << previousPerfectSquare(n) << "\n"; cout << previousPerfectCube(n) << "\n"; return 0;} |
Java
// Java implementation to find the// previous perfect square and cube// smaller than the given numberimport java.util.*;class GFG{// Function to find the previous// perfect square of the number Nstatic int previousPerfectSquare(int N){ int prevN = (int)Math.floor(Math.sqrt(N)); // If N is already a perfect square // decrease prevN by 1. if (prevN * prevN == N) prevN -= 1; return prevN * prevN;}// Function to find the // previous perfect cubestatic int previousPerfectCube(int N){ int prevN = (int)Math.floor(Math.cbrt(N)); // If N is already a perfect cube // decrease prevN by 1. if (prevN * prevN * prevN == N) prevN -= 1; return prevN * prevN * prevN;}// Driver Codepublic static void main(String[] args){ int n = 30; System.out.println(previousPerfectSquare(n)); System.out.println(previousPerfectCube(n));}}// This code is contributed by Rohit_ranjan |
Python3
# Python3 implementation to find the# previous perfect square and cube# smaller than the given numberimport mathimport numpy as np # Function to find the previous# perfect square of the number Ndef previousPerfectSquare(N): prevN = math.floor(math.sqrt(N)); # If N is already a perfect square # decrease prevN by 1. if (prevN * prevN == N): prevN -= 1; return prevN * prevN;# Function to find the # previous perfect cubedef previousPerfectCube(N): prevN = math.floor(np.cbrt(N)); # If N is already a perfect cube # decrease prevN by 1. if (prevN * prevN * prevN == N): prevN -= 1; return prevN * prevN * prevN;# Driver Coden = 30;print(previousPerfectSquare(n));print(previousPerfectCube(n));# This code is contributed by Code_Mech |
C#
// C# implementation to find the// previous perfect square and cube// smaller than the given numberusing System;class GFG{// Function to find the previous// perfect square of the number Nstatic int previousPerfectSquare(int N){ int prevN = (int)Math.Floor(Math.Sqrt(N)); // If N is already a perfect square // decrease prevN by 1. if (prevN * prevN == N) prevN -= 1; return prevN * prevN;}// Function to find the // previous perfect cubestatic int previousPerfectCube(int N){ int prevN = (int)Math.Floor(Math.Cbrt(N)); // If N is already a perfect cube // decrease prevN by 1. if (prevN * prevN * prevN == N) prevN -= 1; return prevN * prevN * prevN;}// Driver Codepublic static void Main(String[] args){ int n = 30; Console.WriteLine(previousPerfectSquare(n)); Console.WriteLine(previousPerfectCube(n));}}// This code is contributed by sapnasingh4991 |
Javascript
<script>// JavaScript implementation to find the// previous perfect square and cube// smaller than the given number// Function to find the previous// perfect square of the number Nfunction previousPerfectSquare(N){ let prevN = Math.floor(Math.sqrt(N)); // If N is already a perfect square // decrease prevN by 1. if (prevN * prevN == N) prevN -= 1; return prevN * prevN;}// Function to find the// previous perfect cubefunction previousPerfectCube(N){ let prevN = Math.floor(Math.cbrt(N)); // If N is already a perfect cube // decrease prevN by 1. if (prevN * prevN * prevN == N) prevN -= 1; return prevN * prevN * prevN;}// Driver Code let n = 30; document.write(previousPerfectSquare(n) + "<br>"); document.write(previousPerfectCube(n) + "<br>");// This code is contributed by Manoj.</script> |
Output:
25 27
Time Complexity: O(log(n))
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



