Find three element from given three arrays such that their sum is X | Set 2

Given three sorted integer arrays A[], B[] and C[], the task is to find three integers, one from each array such that they sum up to a given target value X. Print Yes or No depending on whether such triplet exists or not.
Examples:
Input: A[] = {2}, B[] = {1, 6, 7}, C[] = {4, 5}, X = 12
Output: Yes
A[0] + B[1] + C[0] = 2 + 6 + 4 = 12
Input: A[] = {2}, B[] = {1, 6, 7}, C[] = {4, 5}, X = 14
Output: Yes
A[0] + B[2] + C[1] = 2 + 7 + 5 = 14
Approach: We have already discusses a hash based approach in this article which takes O(N) extra space.
In this article, we will solve this problem using space efficient method that takes O(1) extra space. The idea is using two pointer technique.
We will iterate through the smallest of all the arrays and for each index i, we will use two-pointer on the larger two arrays to find a pair with sum equal to X – A[i] (assuming A[] is the smallest in length among the three arryas).
Now, what is the idea behind using two pointer on larger two arrays? We will try to understand the same from an example.
Let’s assume
len(A) = 100000
len(B) = 10000
len(C) = 10
Case 1: Applying two pointer on larger two arrays
Number of iterations will be of order = len(C) * (len(A) + len(B)) = 10 * (110000) = 1100000
Case 2: Applying two pointer on smaller two arrays
Number of iterations will be of order = len(A) * (len(B) + len(C)) = 100000 * (10010) = 1001000000
Case 3: Applying two pointer on smallest and largest array
Number of iterations will be of order = len(B) * (len(A) + len(C)) = 10000 * (100000 + 10) = 1000100000
As we can see, Case 1 is the most optimal for this example and it can be easily proved that its most optimal in general as well.
Algorithm:
- Sort the arrays in increasing order of their lengths.
- Let’s say the smallest array after sorting is A[]. Then, iterate through all the elements of A[] and for each index ‘i’, apply two-pointer on the other two arrays. We will put a pointer on the beginning of array B[] and a pointer to end of array C[]. Let’s call the pointer ‘j’ and ‘k’ respectively.
- If B[j] + C[k] = X – A[i], we found a match.
- If B[j] + C[k] less than X – A[i], we increase value of ‘j’ by 1.
- If B[j] + C[k] greater than X – A[i], we decrease value of ‘k’ by 1.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function that returns true if there// exists a triplet with sum xbool existsTriplet(int a[], int b[], int c[], int x, int l1, int l2, int l3){ // Sorting arrays such that a[] // represents smallest array if (l2 <= l1 and l2 <= l3) swap(l2, l1), swap(a, b); else if (l3 <= l1 and l3 <= l2) swap(l3, l1), swap(a, c); // Iterating the smallest array for (int i = 0; i < l1; i++) { // Two pointers on second and third array int j = 0, k = l3 - 1; while (j < l2 and k >= 0) { // If a valid triplet is found if (a[i] + b[j] + c[k] == x) return true; if (a[i] + b[j] + c[k] < x) j++; else k--; } } return false;}// Driver codeint main(){ int a[] = { 2, 7, 8, 10, 15 }; int b[] = { 1, 6, 7, 8 }; int c[] = { 4, 5, 5 }; int l1 = sizeof(a) / sizeof(int); int l2 = sizeof(b) / sizeof(int); int l3 = sizeof(c) / sizeof(int); int x = 14; if (existsTriplet(a, b, c, x, l1, l2, l3)) cout << "Yes"; else cout << "No"; return 0;} |
Java
// Java implementation of the approachclass GFG {// Function that returns true if there// exists a triplet with sum xstatic boolean existsTriplet(int a[], int b[], int c[], int x, int l1, int l2, int l3){ // Sorting arrays such that a[] // represents smallest array if (l2 <= l1 && l2 <= l3) { swap(l2, l1); swap(a, b); } else if (l3 <= l1 && l3 <= l2) { swap(l3, l1); swap(a, c); } // Iterating the smallest array for (int i = 0; i < l1; i++) { // Two pointers on second and third array int j = 0, k = l3 - 1; while (j < l2 && k >= 0) { // If a valid triplet is found if (a[i] + b[j] + c[k] == x) return true; if (a[i] + b[j] + c[k] < x) j++; else k--; } } return false;}private static void swap(int x, int y) { int temp = x; x = y; y = temp;}private static void swap(int []x, int []y) { int []temp = x; x = y; y = temp;}// Driver codepublic static void main(String[] args) { int a[] = { 2, 7, 8, 10, 15 }; int b[] = { 1, 6, 7, 8 }; int c[] = { 4, 5, 5 }; int l1 = a.length; int l2 = b.length; int l3 = c.length; int x = 14; if (existsTriplet(a, b, c, x, l1, l2, l3)) System.out.println("Yes"); else System.out.println("No");}}// This code is contributed by Rajput-Ji |
Python3
# Function that returns True if there# exists a triplet with sum xdef existsTriplet(a, b,c, x, l1,l2, l3): # Sorting arrays such that a # represents smallest array if (l2 <= l1 and l2 <= l3): l1, l2 = l2,l1 a, b = b,a elif (l3 <= l1 and l3 <= l2): l1, l3 = l3,l1 a, c = c,a # Iterating the smallest array for i in range(l1): # Two pointers on second and third array j = 0 k = l3 - 1 while (j < l2 and k >= 0): # If a valid triplet is found if (a[i] + b[j] + c[k] == x): return True if (a[i] + b[j] + c[k] < x): j += 1 else: k -= 1 return False# Driver codea = [ 2, 7, 8, 10, 15 ]b = [ 1, 6, 7, 8 ]c = [ 4, 5, 5 ]l1 = len(a)l2 = len(b)l3 = len(c)x = 14if (existsTriplet(a, b, c, x, l1, l2, l3)): print("Yes")else: print("No")# This code is contributed by mohit kumar 29 |
C#
// C# implementation of the approachusing System;class GFG {// Function that returns true if there// exists a triplet with sum xstatic bool existsTriplet(int []a, int []b, int []c, int x, int l1, int l2, int l3){ // Sorting arrays such that a[] // represents smallest array if (l2 <= l1 && l2 <= l3) { swap(l2, l1); swap(a, b); } else if (l3 <= l1 && l3 <= l2) { swap(l3, l1); swap(a, c); } // Iterating the smallest array for (int i = 0; i < l1; i++) { // Two pointers on second and third array int j = 0, k = l3 - 1; while (j < l2 && k >= 0) { // If a valid triplet is found if (a[i] + b[j] + c[k] == x) return true; if (a[i] + b[j] + c[k] < x) j++; else k--; } } return false;}private static void swap(int x, int y) { int temp = x; x = y; y = temp;}private static void swap(int []x, int []y) { int []temp = x; x = y; y = temp;}// Driver codepublic static void Main(String[] args) { int []a = { 2, 7, 8, 10, 15 }; int []b = { 1, 6, 7, 8 }; int []c = { 4, 5, 5 }; int l1 = a.Length; int l2 = b.Length; int l3 = c.Length; int x = 14; if (existsTriplet(a, b, c, x, l1, l2, l3)) Console.WriteLine("Yes"); else Console.WriteLine("No");}}// This code is contributed by Rajput-Ji |
Javascript
<script>// JavaScript implementation of the approach// Function that returns true if there// exists a triplet with sum xfunction existsTriplet(a, b, c, x, l1, l2, l3){ // Sorting arrays such that a[] // represents smallest array if (l2 <= l1 && l2 <= l3) { temp = l1; l1 = l2; l2 = temp; temp = a; a = b; b = temp; } else if (l3 <= l1 && l3 <= l2) { temp = l1; l1 = l3; l3 = temp; temp = a; a = c; c = temp; } // Iterating the smallest array for (var i = 0; i < l1; i++) { // Two pointers on second and third array var j = 0, k = l3 - 1; while (j < l2 && k >= 0) { // If a valid triplet is found if (a[i] + b[j] + c[k] == x) return true; if (a[i] + b[j] + c[k] < x) j++; else k--; } } return false;}// Driver codevar a = [ 2, 7, 8, 10, 15 ];var b = [ 1, 6, 7, 8 ];var c = [ 4, 5, 5 ];var l1 = a.length;var l2 = b.length;var l3 = c.length;var x = 14;if (existsTriplet(a, b, c, x, l1, l2, l3)) document.write("Yes");else document.write("No");</script> |
Yes
Time complexity: O(min(len(A), len(B), len(C)) * max(len(A), len(B), len(C)))
Auxiliary Space: O(1), since no extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



