Find Cube Pairs | Set 2 (A n^(1/3) Solution)

Given a number n, find two pairs that can represent the number as sum of two cubes. In other words, find two pairs (a, b) and (c, d) such that given number n can be expressed as
n = a^3 + b^3 = c^3 + d^3
where a, b, c and d are four distinct numbers.
Examples:
Input: n = 1729 Output: (1, 12) and (9, 10) Explanation: 1729 = 1^3 + 12^3 = 9^3 + 10^3 Input: n = 4104 Output: (2, 16) and (9, 15) Explanation: 4104 = 2^3 + 16^3 = 9^3 + 15^3 Input: n = 13832 Output: (2, 24) and (18, 20) Explanation: 13832 = 2^3 + 24^3 = 18^3 + 20^3
We have discussed a O(n2/3) solution in below set 1.
Find Cube Pairs | Set 1 (A n^(2/3) Solution)
In this post, a O(n1/3) solution is discussed.
Any number n that satisfies the constraint will have two distinct pairs (a, b) and (c, d) such that a, b, c and d are all less than n1/3. The idea is to create an auxiliary array of size n1/3. Each index i in the array will store value equal to cube of that index i.e. arr[i] = i^3. Now the problem reduces to finding pair of elements in an sorted array whose sum is equal to given number n. The problem is discussed in detail here.
Below is the implementation of above idea :
C++
// C++ program to find pairs that can represent// the given number as sum of two cubes#include <iostream>#include <cmath>using namespace std;// Function to find pairs that can represent// the given number as sum of two cubesvoid findPairs(int n){ // find cube root of n int cubeRoot = pow(n, 1.0 / 3.0); // create a array of size of size 'cubeRoot' int cube[cubeRoot + 1]; // for index i, cube[i] will contain i^3 for (int i = 1; i <= cubeRoot; i++) cube[i] = i*i*i; // Find all pairs in above sorted // array cube[] whose sum is equal to n int l = 1; int r = cubeRoot; while (l < r) { if (cube[l] + cube[r] < n) l++; else if(cube[l] + cube[r] > n) r--; else { cout << "(" << l << ", " << r << ")" << endl; l++; r--; } }}// Driver functionint main(){ int n = 20683; findPairs(n); return 0;} |
Java
// Java program to find pairs// that can represent the given // number as sum of two cubesimport java.io.*;class GFG { // Function to find pairs // that can represent the// given number as sum of// two cubesstatic void findPairs(int n){ // find cube root of n int cubeRoot = (int)Math.pow( n, 1.0 / 3.0); // create a array of // size of size 'cubeRoot' int cube[] = new int[cubeRoot + 1]; // for index i, cube[i] // will contain i^3 for (int i = 1; i <= cubeRoot; i++) cube[i] = i * i * i; // Find all pairs in above // sorted array cube[] // whose sum is equal to n int l = 1; int r = cubeRoot; while (l < r) { if (cube[l] + cube[r] < n) l++; else if(cube[l] + cube[r] > n) r--; else { System.out.println("(" + l + ", " + r + ")" ); l++; r--; } }}// Driver Codepublic static void main (String[] args){int n = 20683;findPairs(n);}}// This code is contributed by anuj_67. |
Python3
# Python3 program to find pairs that# can represent the given number # as sum of two cubesimport math# Function to find pairs that can# represent the given number as # sum of two cubesdef findPairs( n): # find cube root of n cubeRoot = int(math.pow(n, 1.0 / 3.0)); # create a array of # size of size 'cubeRoot' cube = [0] * (cubeRoot + 1); # for index i, cube[i] # will contain i^3 for i in range(1, cubeRoot + 1): cube[i] = i * i * i; # Find all pairs in above sorted # array cube[] whose sum # is equal to n l = 1; r = cubeRoot; while (l < r): if (cube[l] + cube[r] < n): l += 1; else if(cube[l] + cube[r] > n): r -= 1; else: print("(" , l , ", " , math.floor(r), ")", end = ""); print(); l += 1; r -= 1;# Driver coden = 20683;findPairs(n);# This code is contributed by mits |
C#
// C# program to find pairs// that can represent the given // number as sum of two cubesusing System;class GFG { // Function to find pairs // that can represent the// given number as sum of// two cubesstatic void findPairs(int n){ // find cube root of n int cubeRoot = (int)Math.Pow(n, 1.0 / 3.0); // create a array of // size of size 'cubeRoot' int []cube = new int[cubeRoot + 1]; // for index i, cube[i] // will contain i^3 for (int i = 1; i <= cubeRoot; i++) cube[i] = i * i * i; // Find all pairs in above // sorted array cube[] // whose sum is equal to n int l = 1; int r = cubeRoot; while (l < r) { if (cube[l] + cube[r] < n) l++; else if(cube[l] + cube[r] > n) r--; else { Console.WriteLine("(" + l + ", " + r + ")" ); l++; r--; } }}// Driver Codepublic static void Main (){ int n = 20683; findPairs(n);}}// This code is contributed by anuj_67. |
PHP
<?php// PHP program to find pairs// that can represent the // given number as sum of // two cubes// Function to find pairs// that can represent the// given number as sum of // two cubesfunction findPairs( $n){ // find cube root of n $cubeRoot = pow($n, 1.0 / 3.0); // create a array of // size of size 'cubeRoot' $cube = array(); // for index i, cube[i] // will contain i^3 for ($i = 1; $i <= $cubeRoot; $i++) $cube[$i] = $i * $i * $i; // Find all pairs in above sorted // array cube[] whose sum // is equal to n $l = 1; $r = $cubeRoot; while ($l < $r) { if ($cube[$l] + $cube[$r] <$n) $l++; else if($cube[$l] + $cube[$r] > $n) $r--; else { echo "(" , $l , ", " , floor($r) , ")" ; echo "\n"; $l++;$r--; } }}// Driver code$n = 20683;findPairs($n);// This code is contributed by anuj_67.?> |
Javascript
<script>// Javascript program to find pairs// that can represent the given // number as sum of two cubes// Function to find pairs // that can represent the// given number as sum of// two cubesfunction findPairs(n){ // find cube root of n var cubeRoot = parseInt(Math.pow( n, 1.0 / 3.0)); // create a array of // size of size 'cubeRoot' var cube = Array.from({length: cubeRoot + 1}, (_, i) => 0); // for index i, cube[i] // will contain i^3 for (i = 1; i <= cubeRoot; i++) cube[i] = i * i * i; // Find all pairs in above // sorted array cube // whose sum is equal to n var l = 1; var r = cubeRoot; while (l < r) { if (cube[l] + cube[r] < n) l++; else if(cube[l] + cube[r] > n) r--; else { document.write("(" + l + ", " + r + ")<br>" ); l++; r--; } }}// Driver Codevar n = 20683;findPairs(n);// This code is contributed by Amit Katiyar </script> |
Output:
(10, 27) (19, 24)
Time Complexity of above solution is O(n^(1/3)).
If you like zambiatek and would like to contribute, you can also write an article using write.zambiatek.com or mail your article to review-team@zambiatek.com. See your article appearing on the zambiatek main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



