Check if a number is an Unusual Number or not

Given a positive integer N. The task is to check if N is an unusual number or not. Print ‘YES’ if M is an unusual number else print ‘NO’.
Unusual number : In Mathematics, an unusual number is a natural number whose greatest prime factor is strictly greater than square root of n.
The first few unusual numbers are –
2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51
Examples:
Input : N = 14 Output : YES Explanation : 7 is largest prime factor of 14 and 7 is strictly greater than square root of 14 Input : N = 16 Output : NO Explanation : 2 is largest prime factor of 16 and 2 is less than square root of 16 ( i.e 4 ).
Approach :
- Find the largest prime factor of the given number N. To find the largest prime factor of N refer this .
- Check if the largest prime factor of N is strictly greater than square root of N.
- If ‘YES’ then N is an Unusual number otherwise Not.
Below is the implementation of the above approach:
C++
// C++ Program to check Unusual number #include <bits/stdc++.h> using namespace std; // Utility function to find largest // prime factor of a number int largestPrimeFactor(int n) { // Initialize the maximum prime factor // variable with the lowest one int max = -1; // Print the number of 2s that divide n while (n % 2 == 0) { max = 2; n >>= 1; // equivalent to n /= 2 } // n must be odd at this point, thus skip // the even numbers and iterate only for // odd integers for (int i = 3; i <= sqrt(n); i += 2) { while (n % i == 0) { max = i; n = n / i; } } // This condition is to handle the case // when n is a prime number greater than 2 if (n > 2) max = n; return max; } // Function to check Unusual number bool checkUnusual(int n) { // Get the largest Prime Factor // of the number int factor = largestPrimeFactor(n); // Check if largest prime factor // is greater than sqrt(n) if (factor > sqrt(n)) { return true; } else { return false; } } // Driver Code int main() { int n = 14; if (checkUnusual(n)) { cout << "YES" << "\n"; } else { cout << "NO" << "\n"; } return 0; } |
Java
// Java Program to check Unusual number class GFG { // Utility function to find largest // prime factor of a number static int largestPrimeFactor(int n) { // Initialize the maximum prime factor // variable with the lowest one int max = -1; // Print the number of 2s that divide n while (n % 2 == 0) { max = 2; n >>= 1; // equivalent to n /= 2 } // n must be odd at this point, thus skip // the even numbers and iterate only for // odd integers for (int i = 3; i <= Math.sqrt(n); i += 2) { while (n % i == 0) { max = i; n = n / i; } } // This condition is to handle the case // when n is a prime number greater than 2 if (n > 2) max = n; return max; } // Function to check Unusual number static boolean checkUnusual(int n) { // Get the largest Prime Factor // of the number int factor = largestPrimeFactor(n); // Check if largest prime factor // is greater than sqrt(n) if (factor > Math.sqrt(n)) { return true; } else { return false; } } // Driver Code public static void main(String[] args) { int n = 14; if (checkUnusual(n)) { System.out.println("YES"); } else { System.out.println("NO"); } }} |
Python3
# Python Program to check Unusual number from math import sqrt # Utility function to find largest # prime factor of a number def largestPrimeFactor(n): # Initialize the maximum prime factor # variable with the lowest one max = -1 # Print the number of 2s that divide n while n % 2 == 0: max = 2; n >>= 1; # equivalent to n /= 2 # n must be odd at this point, thus skip # the even numbers and iterate only for # odd integers for i in range(3,int(sqrt(n))+1,2): while n % i == 0: max = i; n = n / i; # This condition is to handle the case # when n is a prime number greater than 2 if n > 2: max = n return max # Function to check Unusual number def checkUnusual(n): # Get the largest Prime Factor # of the number factor = largestPrimeFactor(n) # Check if largest prime factor # is greater than sqrt(n) if factor > sqrt(n): return True else : return False # Driver Code if __name__ == '__main__': n = 14 if checkUnusual(n): print("YES") else: print("NO")# This code is contributed # by Harshit Saini |
C#
// C# Program to check Unusual number using System;class GFG { // Utility function to find largest // prime factor of a number static int largestPrimeFactor(int n) { // Initialize the maximum prime factor // variable with the lowest one int max = -1; // Print the number of 2s that divide n while (n % 2 == 0) { max = 2; n >>= 1; // equivalent to n /= 2 } // n must be odd at this point, thus skip // the even numbers and iterate only for // odd integers for (int i = 3; i <= Math.Sqrt(n); i += 2) { while (n % i == 0) { max = i; n = n / i; } } // This condition is to handle the case // when n is a prime number greater than 2 if (n > 2) max = n; return max; } // Function to check Unusual number static bool checkUnusual(int n) { // Get the largest Prime Factor // of the number int factor = largestPrimeFactor(n); // Check if largest prime factor // is greater than sqrt(n) if (factor > Math.Sqrt(n)) { return true; } else { return false; } } // Driver Code public static void Main() { int n = 14; if (checkUnusual(n)) { Console.WriteLine("YES"); } else { Console.WriteLine("NO"); } }} |
PHP
<?php// PHP Program to check Unusual number // Utility function to find largest // prime factor of a number function largestPrimeFactor($n) { // Initialize the maximum prime factor // variable with the lowest one $max = -1; // Print the number of 2s that divide n while ($n % 2 == 0) { $max = 2; $n >>= 1; // equivalent to n /= 2 } // n must be odd at this point, thus skip // the even numbers and iterate only for // odd integers for ($i = 3; $i <= sqrt($n); $i += 2) { while ($n % $i == 0) { $max = $i; $n = $n / $i; } } // This condition is to handle the case // when n is a prime number greater than 2 if ($n > 2) $max = $n; return $max; } // Function to check Unusual number function checkUnusual($n) { // Get the largest Prime Factor // of the number $factor = largestPrimeFactor($n); // Check if largest prime factor // is greater than sqrt(n) if ($factor > sqrt($n)) { return true; } else { return false; } } // Driver Code $n = 14; if (checkUnusual($n)) { echo "YES"."\n"; } else { echo "NO"."\n"; } // This code is contributed // by Harshit Saini ?> |
Javascript
<script>// javascript Program to check Unusual number // Utility function to find largest // prime factor of a number function largestPrimeFactor( n) { // Initialize the maximum prime factor // variable with the lowest one var max = -1; // Print the number of 2s that divide n while (n % 2 == 0) { max = 2; n >>= 1; // equivalent to n /= 2 } // n must be odd at this point, thus skip // the even numbers and iterate only for // odd integers for (var i = 3; i <= Math.sqrt(n); i += 2) { while (n % i == 0) { max = i; n = n / i; } } // This condition is to handle the case // when n is a prime number greater than 2 if (n > 2) max = n; return max; } // Function to check Unusual number function checkUnusual(n) { // Get the largest Prime Factor // of the number var factor = largestPrimeFactor(n); // Check if largest prime factor // is greater than sqrt(n) if (factor > Math.sqrt(n)) { return true; } else { return false; } } // Driver Code var n = 14; if (checkUnusual(n)) { document.write("YES"); } else { document.write("NO"); } </script> |
Output:
YES
Time complexity:
Auxiliary space:
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



