Given two binary strings perform operation until B > 0 and print the result

Given two binary strings A and B of length N and M (up to 105). The task is to repeat the below process and find the answer.
Initialize ans = 0
while (B > 0)
ans += A & B (bitwise AND)
B = B / 2
print ans
Note: Answer can be very large so print Answer % 1000000007.
Examples:
Input: A = "1001", B = "10101" Output: 11 1001 & 10101 = 1, ans = 1, B = 1010 1001 & 1010 = 8, ans = 9, B = 101 1001 & 101 = 1, ans = 10, B = 10 1001 & 10 = 0, ans = 10, B = 1 1001 & 1 = 1, ans = 11, B = 0 Input: A = "1010", B = "1101" Output: 12
Approach: Since only B is getting affected in all the iterations and dividing a binary number by 2 means right shifting it by 1 bit, it can be observed that a bit in A will only be affected by the set bits in B which are on the left i.e. more significant than the current bit (including the current bit). For example, A = “1001” and B = “10101”, the least significant bit in A will only be affected by the set bits in B i.e. 3 bits in total and the most significant bit in A will only be affected by a single set bit in B i.e. the most significant bit in B as all the other set bits will not affect it in any iteration of the loop while performing bitwise AND, so the final result will be 20 * 3 + 23 * 1 = 3 + 8 = 11.
Below is the implementation of the above approach.
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;#define ll long long#define mod (int)(1e9 + 7)// Function to return the required resultll BitOperations(string a, int n, string b, int m){ // Reverse the strings reverse(a.begin(), a.end()); reverse(b.begin(), b.end()); // Count the number of set bits in b int c = 0; for (int i = 0; i < m; i++) if (b[i] == '1') c++; // To store the powers of 2 ll power[n]; power[0] = 1; // power[i] = pow(2, i) % mod for (int i = 1; i < n; i++) power[i] = (power[i - 1] * 2) % mod; // To store the final answer ll ans = 0; for (int i = 0; i < n; i++) { if (a[i] == '1') { // Add power[i] to the ans after // multiplying it with the number // of set bits in b ans += c * power[i]; if (ans >= mod) ans %= mod; } // Divide by 2 means right shift b>>1 // if b has 1 at right most side than // number of set bits will get decreased if (b[i] == '1') c--; // If no more set bits in b i.e. b = 0 if (c == 0) break; } // Return the required answer return ans;}// Driver codeint main(){ string a = "1001", b = "10101"; int n = a.length(), m = b.length(); cout << BitOperations(a, n, b, m); return 0;} |
Java
// Java implementation of the approachclass GFG{ static int mod = (int)(1e9 + 7);// Function to return the required resultstatic int BitOperations(String a, int n, String b, int m){ // Reverse the strings char[] ch1 = a.toCharArray(); reverse( ch1 ); a = new String( ch1 ); char[] ch2 = b.toCharArray(); reverse( ch2 ); b = new String( ch2 ); // Count the number of set bits in b int c = 0; for (int i = 0; i < m; i++) if (b.charAt(i) == '1') c++; // To store the powers of 2 int[] power = new int[n]; power[0] = 1; // power[i] = pow(2, i) % mod for (int i = 1; i < n; i++) power[i] = (power[i - 1] * 2) % mod; // To store the final answer int ans = 0; for (int i = 0; i < n; i++) { if (a.charAt(i) == '1') { // Add power[i] to the ans after // multiplying it with the number // of set bits in b ans += c * power[i]; if (ans >= mod) ans %= mod; } // Divide by 2 means right shift b>>1 // if b has 1 at right most side than // number of set bits will get decreased if (b.charAt(i) == '1') c--; // If no more set bits in b i.e. b = 0 if (c == 0) break; } // Return the required answer return ans;}static void reverse(char a[]) { int i, k,n=a.length; char t; for (i = 0; i < n / 2; i++) { t = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = t; } }// Driver codepublic static void main(String[] args){ String a = "1001", b = "10101"; int n = a.length(), m = b.length(); System.out.println(BitOperations(a, n, b, m));}}// This code contributed by Rajput-Ji |
Python3
# Python 3 implementation of the approachmod = 1000000007# Function to return the required resultdef BitOperations(a, n, b, m): # Reverse the strings a = a[::-1] b = b[::-1] # Count the number of set # bits in b c = 0 for i in range(m): if (b[i] == '1'): c += 1 # To store the powers of 2 power = [None] * n power[0] = 1 # power[i] = pow(2, i) % mod for i in range(1, n): power[i] = (power[i - 1] * 2) % mod # To store the final answer ans = 0 for i in range(0, n): if (a[i] == '1'): # Add power[i] to the ans after # multiplying it with the number # of set bits in b ans += c * power[i] if (ans >= mod): ans %= mod # Divide by 2 means right shift b>>1 # if b has 1 at right most side than # number of set bits will get decreased if (b[i] == '1'): c -= 1 # If no more set bits in b i.e. b = 0 if (c == 0): break # Return the required answer return ans# Driver codeif __name__ == '__main__': a = "1001" b = "10101" n = len(a) m = len(b) print(BitOperations(a, n, b, m))# This code is contributed by# Surendra_Gangwar |
C#
// C# implementation of the approachusing System;using System.Collections;class GFG{ static int mod = (int)(1e9 + 7);// Function to return the required resultstatic int BitOperations(string a, int n, string b, int m){ // Reverse the strings char[] ch1 = a.ToCharArray(); Array.Reverse( ch1 ); a = new string( ch1 ); char[] ch2 = b.ToCharArray(); Array.Reverse( ch2 ); b = new string( ch2 ); // Count the number of set bits in b int c = 0; for (int i = 0; i < m; i++) if (b[i] == '1') c++; // To store the powers of 2 int[] power = new int[n]; power[0] = 1; // power[i] = pow(2, i) % mod for (int i = 1; i < n; i++) power[i] = (power[i - 1] * 2) % mod; // To store the final answer int ans = 0; for (int i = 0; i < n; i++) { if (a[i] == '1') { // Add power[i] to the ans after // multiplying it with the number // of set bits in b ans += c * power[i]; if (ans >= mod) ans %= mod; } // Divide by 2 means right shift b>>1 // if b has 1 at right most side than // number of set bits will get decreased if (b[i] == '1') c--; // If no more set bits in b i.e. b = 0 if (c == 0) break; } // Return the required answer return ans;}// Driver codestatic void Main(){ string a = "1001", b = "10101"; int n = a.Length, m = b.Length; Console.WriteLine(BitOperations(a, n, b, m));}}// This code is contributed by mits |
PHP
<?php// PHP implementation of the approach $GLOBALS['mod'] = (1e9 + 7);// Function to return the required result function BitOperations($a, $n, $b, $m) { // Reverse the strings $a = strrev($a); $b = strrev($b); // Count the number of set bits in b $c = 0; for ($i = 0; $i < $m; $i++) if ($b[$i] == '1') $c++; # To store the powers of 2 $power = array() ; $power[0] = 1; // power[i] = pow(2, i) % mod for ($i = 1; $i < $n; $i++) $power[$i] = ($power[$i - 1] * 2) % $GLOBALS['mod']; // To store the final answer $ans = 0; for ($i = 0; $i < $n; $i++) { if ($a[$i] == '1') { // Add power[i] to the ans after // multiplying it with the number // of set bits in b $ans += $c * $power[$i]; if ($ans >= $GLOBALS['mod']) $ans %= $GLOBALS['mod']; } // Divide by 2 means right shift b>>1 // if b has 1 at right most side than // number of set bits will get decreased if ($b[$i] == '1') $c--; // If no more set bits in b i.e. b = 0 if ($c == 0) break; } // Return the required answer return $ans; } // Driver code $a = "1001";$b = "10101"; $n = strlen($a);$m = strlen($b); echo BitOperations($a, $n, $b, $m); // This code is contributed by Ryuga?> |
Javascript
<script> // JavaScript implementation of the approach let mod = (1e9 + 7); // Function to return the required result function BitOperations(a, n, b, m) { // Reverse the strings let ch1 = a.split(''); ch1.reverse(); a = ch1.join(""); let ch2 = b.split(''); ch2.reverse(); b = ch2.join(""); // Count the number of set bits in b let c = 0; for (let i = 0; i < m; i++) if (b[i] == '1') c++; // To store the powers of 2 let power = new Array(n); power[0] = 1; // power[i] = pow(2, i) % mod for (let i = 1; i < n; i++) power[i] = (power[i - 1] * 2) % mod; // To store the final answer let ans = 0; for (let i = 0; i < n; i++) { if (a[i] == '1') { // Add power[i] to the ans after // multiplying it with the number // of set bits in b ans += c * power[i]; if (ans >= mod) ans %= mod; } // Divide by 2 means right shift b>>1 // if b has 1 at right most side than // number of set bits will get decreased if (b[i] == '1') c--; // If no more set bits in b i.e. b = 0 if (c == 0) break; } // Return the required answer return ans; } let a = "1001", b = "10101"; let n = a.length, m = b.length; document.write(BitOperations(a, n, b, m)); </script> |
11
Time Complexity: O(m + n)
Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



