Minimum number of Binary strings to represent a Number

Given a number N. The task is to find the minimum number of binary strings required to represent the given number as the sum of the binary strings.
Examples:
Input : 131
Output : Minimum Number of binary strings needed: 3
111 10 10
Input : 564
Output :Minimum Number of binary strings needed: 6
111 111 111 111 110 10
Approach:
- Store all digits of the given number in the array.
- Find the maximum digit in the array. This maximum number(maxi) indicates the number of binary strings required to represent the given number.
- Now, find maxi numbers by substituting 0’s and 1’s greedily.
Below is the implementation of the above approach:
C++
// C++ program to find the minimum number of // binary strings to represent a number#include <bits/stdc++.h>using namespace std;// Function to find the minimum number of // binary strings to represent a numbervoid minBinary(int n){ int digit[10], len = 0; while (n > 0) { digit[len++] = n % 10; n /= 10; } // Storing digits in correct order reverse(digit, digit + len); int ans = 0; // Find the maximum digit in the array for (int i = 0; i < len; i++) { ans = max(ans, digit[i]); } cout << "Minimum Number of binary strings needed: " << ans << endl; // Traverse for all the binary strings for (int i = 1; i <= ans; i++) { int num = 0; for (int j = 0; j < len; j++) { // If digit at jth position is greater // than 0 then substitute 1 if (digit[j] > 0) { num = num * 10 + 1; digit[j]--; } else { num *= 10; } } cout << num << " "; }}// Driver codeint main(){ int n = 564; minBinary(n); return 0;} |
Java
// Java program to find the minimum number of // binary Strings to represent a numberimport java.util.*;class GFG { // Function to find the minimum number of // binary Strings to represent a number static void minBinary(int n) { int[] digit = new int[10]; int len = 0; while (n > 0) { digit[len++] = n % 10; n /= 10; } // Storing digits in correct order digit = reverse(digit, 0, len - 1); int ans = 0; // Find the maximum digit in the array for (int i = 0; i < len; i++) { ans = Math.max(ans, digit[i]); } System.out.print("Minimum Number of binary" + " Strings needed: " + ans + "\n"); // Traverse for all the binary Strings for (int i = 1; i <= ans; i++) { int num = 0; for (int j = 0; j < len; j++) { // If digit at jth position is greater // than 0 then substitute 1 if (digit[j] > 0) { num = num * 10 + 1; digit[j]--; } else { num *= 10; } } System.out.print(num + " "); } } static int[] reverse(int str[], int start, int end) { // Temporary variable to store character int temp; while (start <= end) { // Swapping the first and last character temp = str[start]; str[start] = str[end]; str[end] = temp; start++; end--; } return str; } // Driver code public static void main(String[] args) { int n = 564; minBinary(n); }}// This code is contributed by 29AjayKumar |
Python3
# Python3 program to find the minimum number of # binary strings to represent a number# Function to find the minimum number of # binary strings to represent a numberdef minBinary(n): digit = [0 for i in range(3)] len = 0 while (n > 0): digit[len] = n % 10 len += 1 n //= 10 # Storing digits in correct order digit = digit[::-1] ans = 0 # Find the maximum digit in the array for i in range(len): ans = max(ans, digit[i]) print("Minimum Number of binary strings needed:", ans) # Traverse for all the binary strings for i in range(1, ans + 1, 1): num = 0 for j in range(0, len, 1): # If digit at jth position is greater # than 0 then substitute 1 if (digit[j] > 0): num = num * 10 + 1 digit[j] -= 1 else: num *= 10 print(num, end = " ")# Driver codeif __name__ == '__main__': n = 564 minBinary(n) # This code is contributed by# Surendra_Gangwar |
C#
// C# program to find the minimum number of // binary Strings to represent a numberusing System;class GFG { // Function to find the minimum number of // binary Strings to represent a number static void minBinary(int n) { int[] digit = new int[10]; int len = 0; while (n > 0) { digit[len++] = n % 10; n /= 10; } // Storing digits in correct order digit = reverse(digit, 0, len - 1); int ans = 0; // Find the maximum digit in the array for (int i = 0; i < len; i++) { ans = Math.Max(ans, digit[i]); } Console.Write("Minimum Number of binary" + " Strings needed: " + ans + "\n"); // Traverse for all the binary Strings for (int i = 1; i <= ans; i++) { int num = 0; for (int j = 0; j < len; j++) { // If digit at jth position is greater // than 0 then substitute 1 if (digit[j] > 0) { num = num * 10 + 1; digit[j]--; } else { num *= 10; } } Console.Write(num + " "); } } static int[] reverse(int []str, int start, int end) { // Temporary variable to store character int temp; while (start <= end) { // Swapping the first and // last character temp = str[start]; str[start] = str[end]; str[end] = temp; start++; end--; } return str; } // Driver code public static void Main(String[] args) { int n = 564; minBinary(n); }}// This code is contributed by 29AjayKumar |
Javascript
<script>// Javascript program to // find the minimum number of // binary Strings to represent// a number // Function to find the minimum number of // binary Strings to represent a number function minBinary(n) { var digit = Array(10).fill(0); var len = 0; while (n > 0) { digit[len++] = n % 10; n = parseInt(n/10); } // Storing digits in correct order digit = reverse(digit, 0, len - 1); var ans = 0; // Find the maximum digit in the array for (i = 0; i < len; i++) { ans = Math.max(ans, digit[i]); } document.write("Minimum Number of binary" + " Strings needed: " + ans + "<br/>"); // Traverse for all the binary Strings for (i = 1; i <= ans; i++) { var num = 0; for (j = 0; j < len; j++) { // If digit at jth position is greater // than 0 then substitute 1 if (digit[j] > 0) { num = num * 10 + 1; digit[j]--; } else { num *= 10; } } document.write(num + " "); } } function reverse(str , start , end) { // Temporary variable to store character var temp; while (start <= end) { // Swapping the first and last character temp = str[start]; str[start] = str[end]; str[end] = temp; start++; end--; } return str; } // Driver code var n = 564; minBinary(n);// This code contributed by umadevi9616 </script> |
Output:
Minimum No of binary strings needed: 6 111 111 111 111 110 10
Time Complexity: O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



