Maximum XOR path of a Binary Tree

Given a Binary Tree, the task is to find the maximum of all the XOR value of all the nodes in the path from the root to leaf.
Examples:
Input:
2
/ \
1 4
/ \
10 8
Output: 11
Explanation:
All the paths are:
2-1-10 XOR-VALUE = 9
2-1-8 XOR-VALUE = 11
2-4 XOR-VALUE = 6
Input:
2
/ \
1 4
/ \ / \
10 8 5 10
Output: 12
Approach:
- To solve the question mentioned above we have to traverse the tree recursively using pre-order traversal. For each node keep calculating the XOR of the path from root till the current node.
XOR of current node’s path = (XOR of the path till the parent) ^ (current node value)
- If the node is a leaf node that is left and the right child for the current nodes are NULL then we compute the max-Xor, as
max-Xor = max(max-Xor, cur-Xor).
Below is the implementation of the above approach:
C++
// C++ program to compute the// Max-Xor value of path from// the root to leaf of a Binary tree#include <bits/stdc++.h>using namespace std;// Binary tree nodestruct Node { int data; struct Node *left, *right;};// Function to create a new nodestruct Node* newNode(int data){ struct Node* newNode = new Node; newNode->data = data; newNode->left = newNode->right = NULL; return (newNode);}// Function calculate the// value of max-xorvoid Solve(Node* root, int xr, int& max_xor){ // Updating the xor value // with the xor of the // path from root to // the node xr = xr ^ root->data; // Check if node is leaf node if (root->left == NULL && root->right == NULL) { max_xor = max(max_xor, xr); return; } // Check if the left // node exist in the tree if (root->left != NULL) { Solve(root->left, xr, max_xor); } // Check if the right node // exist in the tree if (root->right != NULL) { Solve(root->right, xr, max_xor); } return;}// Function to find the// required countint findMaxXor(Node* root){ int xr = 0, max_xor = 0; // Recursively traverse // the tree and compute // the max_xor Solve(root, xr, max_xor); // Return the result return max_xor;}// Driver codeint main(void){ // Create the binary tree struct Node* root = newNode(2); root->left = newNode(1); root->right = newNode(4); root->left->left = newNode(10); root->left->right = newNode(8); root->right->left = newNode(5); root->right->right = newNode(10); cout << findMaxXor(root); return 0;} |
Java
// Java program to compute the// Max-Xor value of path from// the root to leaf of a Binary treeclass GFG { // Binary tree node static class Node { int data = 0; Node left = null, right = null; }; // Function to create a new node static Node newNode(int data) { Node newNode = new Node(); newNode.data = data; newNode.left = newNode.right = null; return (newNode); } // Function calculate the // value of max-xor static int Solve(Node root, int xr, int max_xor) { // Updating the xor value // with the xor of the // path from root to // the node xr = xr ^ root.data; // Check if node is leaf node if (root.left == null && root.right == null) { max_xor = Math.max(max_xor, xr); return max_xor; } // Check if the left // node exist in the tree if (root.left != null) { max_xor = Solve(root.left, xr, max_xor); } // Check if the right node // exist in the tree if (root.right != null) { max_xor = Solve(root.right, xr, max_xor); } return max_xor; } // Function to find the // required count static int findMaxXor(Node root) { int xr = 0, max_xor = 0; // Recursively traverse // the tree and compute // the max_xor max_xor = Solve(root, xr, max_xor); // Return the result return max_xor; } // Driver code public static void main(String args[]) { // Create the binary tree Node root = newNode(2); root.left = newNode(1); root.right = newNode(4); root.left.left = newNode(10); root.left.right = newNode(8); root.right.left = newNode(5); root.right.right = newNode(10); System.out.print(findMaxXor(root)); }}// This code is contributed by saurabh_jaiswal. |
Python3
# Python3 program to compute the # Max-Xor value of path from # the root to leaf of a Binary tree # Binary tree nodeclass Node: # Function to create a new node def __init__(self, data): self.data = data self.left = None self.right = None# Function calculate the # value of max-xordef Solve(root, xr, max_xor): # Updating the xor value # with the xor of the # path from root to # the node xr = xr ^ root.data # Check if node is leaf node if (root.left == None and root.right == None): max_xor[0] = max(max_xor[0], xr) # Check if the left # node exist in the tree if root.left != None: Solve(root.left, xr, max_xor) # Check if the right node # exist in the tree if root.right != None: Solve(root.right, xr, max_xor) return# Function to find the # required count def findMaxXor(root): xr, max_xor = 0, [0] # Recursively traverse # the tree and compute # the max_xor Solve(root, xr, max_xor) # Return the result return max_xor[0]# Driver code# Create the binary treeroot = Node(2)root.left = Node(1)root.right = Node(4) root.left.left = Node(10) root.left.right = Node(8) root.right.left = Node(5) root.right.right = Node(10) print(findMaxXor(root))# This code is contributed by Shivam Singh |
C#
// C# code for the above approachusing System;namespace GFG{ // Binary tree node class Node { public int data = 0; public Node left = null, right = null; } class GFG { // Function to create a new node static Node newNode(int data) { Node newNode = new Node(); newNode.data = data; newNode.left = newNode.right = null; return (newNode); } // Function calculate the // value of max-xor static int Solve(Node root, int xr, int max_xor) { // Updating the xor value // with the xor of the // path from root to // the node xr = xr ^ root.data; // Check if node is leaf node if (root.left == null && root.right == null) { max_xor = Math.Max(max_xor, xr); return max_xor; } // Check if the left // node exist in the tree if (root.left != null) { max_xor = Solve(root.left, xr, max_xor); } // Check if the right node // exist in the tree if (root.right != null) { max_xor = Solve(root.right, xr, max_xor); } return max_xor; } // Function to find the // required count static int findMaxXor(Node root) { int xr = 0, max_xor = 0; // Recursively traverse // the tree and compute // the max_xor max_xor = Solve(root, xr, max_xor); // Return the result return max_xor; } // Driver code static void Main(string[] args) { // Create the binary tree Node root = newNode(2); root.left = newNode(1); root.right = newNode(4); root.left.left = newNode(10); root.left.right = newNode(8); root.right.left = newNode(5); root.right.right = newNode(10); Console.WriteLine(findMaxXor(root)); } }}// This code is contributed by Potta Lokesh |
Javascript
<script> // JavaScript program to compute the// Max-Xor value of path from// the root to leaf of a Binary tree// Binary tree nodeclass Node { constructor() { this.data = 0; this.left = null; this.right = null; }};// Function to create a new nodefunction newNode(data){ var newNode = new Node; newNode.data = data; newNode.left = newNode.right = null; return (newNode);}// Function calculate the// value of Math.max-xorfunction Solve(root, xr, max_xor){ // Updating the xor value // with the xor of the // path from root to // the node xr = xr ^ root.data; // Check if node is leaf node if (root.left == null && root.right == null) { max_xor = Math.max(max_xor, xr); return max_xor; } // Check if the left // node exist in the tree if (root.left != null) { max_xor = Solve(root.left, xr, max_xor); } // Check if the right node // exist in the tree if (root.right != null) { max_xor = Solve(root.right, xr, max_xor); } return max_xor;}// Function to find the// required countfunction findMaxXor(root){ var xr = 0, max_xor = 0; // Recursively traverse // the tree and compute // the max_xor max_xor = Solve(root, xr, max_xor); // Return the result return max_xor;}// Driver code// Create the binary treevar root = newNode(2);root.left = newNode(1);root.right = newNode(4);root.left.left = newNode(10);root.left.right = newNode(8);root.right.left = newNode(5);root.right.right = newNode(10);document.write( findMaxXor(root));</script> |
Output:
12
Time Complexity: We are iterating over each node only once, therefore it will take O(N) time where N is the number of nodes in the Binary tree.
Auxiliary Space Complexity: The Auxiliary Space complexity will be O(1), as there is no extra space used
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



