Maximize count of persons receiving a chocolate

Given two arrays A[], consisting of N integers, and B[], consisting of taste values of M chocolates and an integer X, the task is to find the maximum number of people who can receive a chocolate based on the condition that one person can have only one chocolate and with taste value in the range [A[i] – X, A[i] + X].Â
Note: Once a chocolate is given to a person, it cannot be given to any other person.
Examples:
Input: A[] = {90, 49, 20, 39, 60}, B[] = {14, 24, 82}, X = 15
Output: 3
Explanation:Â
1st person can pick the 3rd chocolate as the value of the 3rd chocolate ( = 82 ) lies in the range [75 ( = 90 – 15 ), 105 ( = 90 + 15)].Â
2nd person can’t pick any chocolate because there is no chocolate with value in the range [34 ( = 49 – 15 ), 64 ( = 49 + 15).Â
3rd person can pick the 1st chocolate as the value of the 1st chocolate lies in the range [5 ( = 20 – 15), 35 ( = 20 – 15)].Â
4th person can pick the 2nd chocolate because value of the 2nd chocolate lies in the range [ 24 ( = 39 – 15) and 54 ( = 39 – 15)].Â
5th person can’t pick any chocolate because there is no chocolate with value in the range [45 ( = 60 – 15), 75 ( = 60 – 15)].Â
Therefore, the total number of people receiving a chocolate is 3, which is the maximum possible.Input: A[] = {2, 4, 6, 40, 50}, B[] = {38, 36}, X=13
Output: 2
Approach: This problem can be solved using Greedy Technique/a> and Searching. The key observation here is for any ith person, assign the chocolate with smallest possible value that lies in the range, if possible. Otherwise, exclude that person from the result. Follow the steps below:
- Sort the given arrays A[] and B[] in non-decreasing order.
- Initialize a multiset to store the elements of the array B[].
- Initialize a variable count = 0, to store the count of persons receiving a chocolate.
- Traverse the array A[] and find the smallest possible chocolate value that can be assigned to every ith person using Binary Search or lower_bound(). Check if that value lies in the range [ai – X, ai + X] or not.
- If found to be true, then increment count and remove the value of this chocolate from the multiset.
- After completing the above steps, print the value of count as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;Â
// Function to count the maximum number// of persons receiving a chocolateint countMaxPersons(int* A, int n, int* B,                    int m, int x){Â
    // Initialize count as 0    int count = 0;Â
    // Sort the given arrays    sort(A, A + n);    sort(B, B + m);Â
    // Initialize a multiset    multiset<int> s;Â
    // Insert B[] array values into    // the multiset    for (int i = 0; i < m; i++)        s.insert(B[i]);Â
    // Traverse elements in array A[]    for (int i = 0; i < n; i++) {        int val = A[i] - x;Â
        // Search for the lowest value in B[]        auto it = s.lower_bound(val);Â
        // If found, increment count,        // and delete from set        if (it != s.end()            && *it <= A[i] + x) {            count++;            s.erase(it);        }    }Â
    // Return the number of people    return count;}Â
// Driver Codeint main(){Â Â Â Â int A[] = { 90, 49, 20, 39, 49 };Â Â Â Â int B[] = { 14, 24, 82 };Â Â Â Â int X = 15;Â Â Â Â int N = sizeof(A) / sizeof(A[0]);Â Â Â Â int M = sizeof(B) / sizeof(B[0]);Â
    // Function Call    cout << countMaxPersons(A, N, B, M, X);} |
Java
import java.util.*;Â
public class Main {Â
    // Function to count the maximum number    // of persons receiving a chocolate    public static int countMaxPersons(int[] A, int n, int[] B,                                      int m, int x) {Â
        // Initialize count as 0        int count = 0;Â
        // Sort the given arrays        Arrays.sort(A);        Arrays.sort(B);Â
        // Initialize a multiset        TreeSet<Integer> s = new TreeSet<>();Â
        // Insert B[] array values into        // the multiset        for (int i = 0; i < m; i++)            s.add(B[i]);Â
        // Traverse elements in array A[]        for (int i = 0; i < n; i++) {            int val = A[i] - x;Â
            // Search for the lowest value in B[]            Integer it = s.ceiling(val);Â
            // If found, increment count,            // and delete from set            if (it != null && it <= A[i] + x) {                count++;                s.remove(it);            }        }Â
        // Return the number of people        return count;    }Â
    public static void main(String[] args) {        int[] A = {90, 49, 20, 39, 49};        int[] B = {14, 24, 82};        int X = 15;        int N = A.length;        int M = B.length;Â
        // Function Call        System.out.println(countMaxPersons(A, N, B, M, X));    }}// This code is provided by mukul ojha |
Python3
# Python3 program for the above approachfrom bisect import bisect_leftÂ
# Function to count the maximum number# of persons receiving a chocolatedef countMaxPersons(A, n, B, m, x):Â
    # Initialize count as 0    count = 0Â
    # Sort the given arrays    A = sorted(A)    B = sorted(B)Â
    # Initialize a multiset    s = []Â
    # Insert B[] array values into    # the multiset    for i in range(m):        s.append(B[i])Â
    # Traverse elements in array A[]    for i in range(n):        val = A[i] - xÂ
        # Search for the lowest value in B[]        it = bisect_left(s,val)Â
        # If found, increment count,        # and delete from set        if (it != len(s) and it <= A[i] + x):            count += 1            del s[it]Â
    # Return the number of people    return countÂ
# Driver Codeif __name__ == '__main__':Â
    A = [90, 49, 20, 39, 49]    B = [14, 24, 82]    X = 15    N = len(A)    M = len(B)Â
    # Function Call    print(countMaxPersons(A, N, B, M, X))Â
    # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approachÂ
using System;using System.Collections.Generic;Â
public class Program{    // Function to count the maximum number    // of persons receiving a chocolate    public static int CountMaxPersons(int[] A, int n, int[] B,                                      int m, int x)    {        // Initialize count as 0        int count = 0;Â
        // Sort the given arrays        Array.Sort(A);        Array.Sort(B);Â
        // Initialize a sorted set        SortedSet<int> s = new SortedSet<int>();Â
        // Insert B[] array values into        // the sorted set        for (int i = 0; i < m; i++)            s.Add(B[i]);Â
        // Traverse elements in array A[]        for (int i = 0; i < n; i++)        {            int val = A[i] - x;Â
            // Search for the lowest value in B[]            var it = s.GetViewBetween(val, A[i] + x).GetEnumerator();Â
            // If found, increment count,            // and delete from set            if (it.MoveNext())            {                count++;                s.Remove(it.Current);            }        }Â
        // Return the number of people        return count;    }Â
    public static void Main(string[] args)    {        int[] A = { 90, 49, 20, 39, 49 };        int[] B = { 14, 24, 82 };        int X = 15;        int N = A.Length;        int M = B.Length;Â
        // Function Call        Console.WriteLine(CountMaxPersons(A, N, B, M, X));    }}Â
// This code is provided by codebraxnzt |
Javascript
// Function to count the maximum number of persons receiving a chocolatefunction countMaxPersons(A, n, B, m, x) {Â
  // Initialize count as 0  let count = 0;Â
  // Sort the given arrays  A = A.sort((a, b) => a - b);  B = B.sort((a, b) => a - b);Â
  // Initialize a set  let s = new Set(B);Â
  // Traverse elements in array A[]  for (let i = 0; i < n; i++) {    let val = A[i] - x;Â
    // Search for the lowest value in B[]    let it = Array.from(s).findIndex(elem => elem >= val);Â
    // If found, increment count,    // and delete from set    if (it !== -1 && Array.from(s)[it] <= A[i] + x) {      count += 1;      s.delete(Array.from(s)[it]);    }  }Â
  // Return the number of people  return count;}Â
// Driver Codelet A = [90, 49, 20, 39, 49];let B = [14, 24, 82];let X = 15;let N = A.length;let M = B.length;Â
// Function Callconsole.log(countMaxPersons(A, N, B, M, X));Â
// This code is contributed by Aditya Sharma |
3
Â
Time Complexity: O(N*log N)
Auxiliary Space: O(M)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



