Reflexive Relation on Set

A relation is a subset of the cartesian product of a set with another set. A relation contains ordered pairs of elements of the set it is defined on. To learn more about relations refer to the article on “Relation and their types“.
What is a Reflexive Relation?
A relation R on a set A is called reflexive relation if
(a, a) ∈ R ∀ a ∈ A, i.e. aRa for all a ∈ A,
where R is a subset of (A x A), i.e. the cartesian product of set A with itself.
This means if element “a” is present in set A, then a relation “a” to “a” (aRa) should be present in relation R. If any such aRa is not present in R then R is not a reflexive relation.
A reflexive relation is denoted as:
IA = {(a, a): a ∈ A}
Example:
Consider set A = {a, b} and R = {(a, a), (b, b)}.
Here R is a reflexive relation as for both a and b, aRa and bRb are present in the set.
Properties of a Reflexive Relation
- Empty relation on a non-empty relation set is never reflexive.
- Relation defined on an empty set is always reflexive.
- Universal relation defined on any set is always reflexive.
How to verify a Reflexive Relation?
The process of identifying/verifying if any given relation is reflexive:
- Check for the existence of every aRa tuple in the relation for all a present in the set.
- If every tuple exists, only then the relation is reflexive. Otherwise, not reflexive.
Follow the below illustration for a better understanding:
Illustration:
Consider set A = {a, b} and a relation R = {{a, a}, {a, b}}.
For the element a in A:
=> The pair {a, a} is present in R.
=> Hence aRa is satisfied.For the element b in A:
=> The pair {b, b} is not present int R.
=> Hence bRb is not satisfied.As the condition for ‘b’ is not satisfied, the relation is not reflexive.
Below is a code implementation of the approach.
C++
// C++ code to check if a set is reflexive#include <bits/stdc++.h>using namespace std;class Relation {public: bool checkReflexive(set<int> A, set<pair<int, int> > R) { // Property 1 if (A.size() > 0 && R.size() == 0) { return false; } // Property 2 else if (A.size() == 0) { return true; } for (auto i = A.begin(); i != A.end(); i++) { // Making a tuple of same element auto temp = make_pair(*i, *i); if (R.find(temp) == R.end()) { // If aRa tuple not exists in relation R return false; } } // All aRa tuples exists in relation R return true; }};// Driver codeint main(){ // Creating a set A set<int> A{ 1, 2, 3, 4 }; // Creating relation R set<pair<int, int> > R; // Inserting tuples in relation R R.insert(make_pair(1, 1)); R.insert(make_pair(1, 2)); R.insert(make_pair(2, 2)); R.insert(make_pair(2, 3)); R.insert(make_pair(3, 2)); R.insert(make_pair(3, 3)); Relation obj; // R in not reflexive as (4, 4) tuple is not present if (obj.checkReflexive(A, R)) { cout << "Reflexive Relation" << endl; } else { cout << "Not a Reflexive Relation" << endl; } return 0;} |
Java
// Java code implementation for the above approachimport java.io.*;import java.util.*;class pair { int first, second; pair(int first, int second) { this.first = first; this.second = second; }}class GFG { static class Relation { boolean checkReflexive(Set<Integer> A, Set<pair> R) { // Property 1 if (A.size() > 0 && R.size() == 0) { return false; } // Property 2 else if (A.size() == 0) { return true; } for (var i : A) { if (!R.contains(new pair(i, i))) { // If aRa tuple not exists in relation R return false; } } // All aRa tuples exists in relation R return true; } } public static void main(String[] args) { // Creating a set A Set<Integer> A = new HashSet<>(); A.add(1); A.add(2); A.add(3); A.add(4); // Creating relation R Set<pair> R = new HashSet<>(); // Inserting tuples in relation R R.add(new pair(1, 1)); R.add(new pair(1, 2)); R.add(new pair(2, 2)); R.add(new pair(2, 3)); R.add(new pair(3, 2)); R.add(new pair(3, 3)); Relation obj = new Relation(); // R in not reflexive as (4, 4) tuple is not present if (obj.checkReflexive(A, R)) { System.out.println("Reflexive Relation"); } else { System.out.println("Not a Reflexive Relation"); } }}// This code is contributed by lokeshmvs21. |
Python3
class Relation: def checkReflexive(self, A, R): # Property 1 if len(A) > 0 and len(R) == 0: return False # Property 2 elif len(A) == 0: return True for i in A: if (i, i) not in R: # If aRa tuple not exists in relation R return False # All aRa tuples exists in relation R return True# Driver codeif __name__ == '__main__': # Creating a set A A = {1, 2, 3, 4} # Creating relation R R = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 2), (3, 3)} obj = Relation() # R in not reflexive as (4, 4) tuple is not present if obj.checkReflexive(A, R): print("Reflexive Relation") else: print("Not a Reflexive Relation") |
C#
// C# code implementation for the above approachusing System;using System.Collections.Generic;class pair { public int first, second; public pair(int first, int second) { this.first = first; this.second = second; }}public class GFG { class Relation { public bool checkReflexive(HashSet<int> A, HashSet<pair> R) { // Property 1 if (A.Count > 0 && R.Count == 0) { return false; } // Property 2 else if (A.Count == 0) { return true; } foreach(var i in A) { if (!R.Contains(new pair(i, i))) { // If aRa tuple not exists in relation R return false; } } // All aRa tuples exists in relation R return true; } } static public void Main() { // Creating a set A HashSet<int> A = new HashSet<int>(); A.Add(1); A.Add(2); A.Add(3); A.Add(4); // Creating relation R HashSet<pair> R = new HashSet<pair>(); // Inserting tuples in relation R R.Add(new pair(1, 1)); R.Add(new pair(1, 2)); R.Add(new pair(2, 2)); R.Add(new pair(2, 3)); R.Add(new pair(3, 2)); R.Add(new pair(3, 3)); Relation obj = new Relation(); // R in not reflexive as (4, 4) tuple is not present if (obj.checkReflexive(A, R)) { Console.WriteLine("Reflexive Relation"); } else { Console.WriteLine("Not a Reflexive Relation"); } }}// This code is contributed by lokesh |
Javascript
// JS code to check if a set is reflexivefunction checkReflexive(A, R){ let cnt = 0; // Property 1 if (A.size > 0 && R.size == 0) { return false; } // Property 2 else if (A.size == 0) { return true; } A.forEach(i => { // Making a tuple of same element let temp = [i, i]; if (!R.has(temp)) { // If aRa tuple not exists in relation R cnt++; } }); // All aRa tuples exists in relation R if(cnt==0) return true; else return false;}// Driver code// Creating a set Alet A = new Set([ 1, 2, 3, 4 ]);// Creating relation Rlet R = new Set();// Inserting tuples in relation RR.add([1,1]);R.add([1,2]);R.add([2,2]);R.add([2,3]);R.add([3,2]);R.add([3,3]);R.add([3,3]);// R in not reflexive as (4, 4) tuple is not presentif (checkReflexive(A, R)) { console.log("Reflexive Relation");}else { console.log("Not a Reflexive Relation");}// This code is contributed by akashish__ |
Not a Reflexive Relation
Time Complexity: O(N * log M) where N is the size of the set and M is the number of pairs in the relation
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



