Find largest sum of digits in all divisors of n

Given an integer number n, find the largest sum of digits in all divisors of n.
Examples :
Input : n = 12 Output : 6 Explanation: The divisors are: 1 2 3 4 6 12. 6 is maximum sum among all divisors Input : n = 68 Output : 14 Explanation: The divisors are: 1 2 4 68 68 consists of maximum sum of digit
Naive approach:
The idea is simple, we find all divisors of a number one by one. For every divisor, we compute sum of digits. Finally, we return the largest sum of digits.
Below is the implementation of the above approach:
CPP
// CPP program to find maximum // sum of digits in all divisors // of n numbers. #include <bits/stdc++.h> using namespace std; // Function to get sum of digits int getSum(int n) { int sum = 0; while (n != 0) { sum = sum + n % 10; n = n / 10; } return sum; } // returns maximum sum int largestDigitSumdivisior(int n) { int res = 0; for (int i = 1; i <= n; i++) // if i is factor of n // then push the divisor // in the stack. if (n % i == 0) res = max(res, getSum(i)); return res; } // Driver Code int main() { int n = 14; cout << largestDigitSumdivisior(n) << endl; return 0; } |
Java
// Java program to find maximum // sum of digits in all divisors // of n numbers. import java.util.*; import java.lang.*; class GfG { // Function to get // sum of digits public static int getSum(int n) { int sum = 0; while (n != 0) { sum = sum + n % 10; n = n/10; } return sum; } // returns maximum sum public static int largestDigitSumdivisior(int n) { int res = 0; for (int i = 1; i <= n; i++) // if i is factor of n // then push the divisor // in the stack. if (n % i == 0) res = Math.max(res, getSum(i)); return res; } // Driver Code public static void main(String argc[]){ int n = 14; System.out.println(largestDigitSumdivisior(n)); } } // This code is contributed // by Sagar Shukla |
Python3
# Python3 code to find # maximum sum of digits # in all divisors of n numbers. # Function to get sum of digits def getSum( n ): sum = 0 while n != 0: sum = sum + n % 10 n = int( n / 10 ) return sum # returns maximum sum def largestDigitSumdivisior( n ): res = 0 for i in range(1, n + 1): # if i is factor of n # then push the divisor # in the stack. if n % i == 0: res = max(res, getSum(i)) return res # Driver Code n = 14print(largestDigitSumdivisior(n) ) # This code is contributed # by "Sharad_Bhardwaj". |
C#
// C# program to find maximum // sum of digits in all // divisors of n numbers. using System; class GfG { // Function to get // sum of digits public static int getSum(int n) { int sum = 0; while (n != 0) { sum = sum + n % 10; n = n / 10; } return sum; } // returns maximum sum public static int largestDigitSumdivisior(int n) { int res = 0; for (int i = 1; i <= n; i++) // if i is factor of n // then push the divisor // in the stack. if (n % i == 0) res = Math.Max(res, getSum(i)); return res; } // Driver Code public static void Main() { int n = 14; Console.WriteLine(largestDigitSumdivisior(n)); } } // This code is contributed by vt_m |
PHP
<?php // PHP program to find maximum // sum of digits in all // divisors of n numbers. // Function to get // sum of digits function getSum( $n) { $sum = 0; while ($n != 0) { $sum = $sum + $n % 10; $n = $n/10; } return $sum; } // returns maximum sum function largestDigitSumdivisior( $n) { $res = 0; for ($i = 1; $i <= $n; $i++) // if i is factor of n then // push the divisor in // the stack. if ($n % $i == 0) $res = max($res, getSum($i)); return $res; } // Driver Code $n = 14; echo largestDigitSumdivisior($n); // This code is contributed by anuj_67. ?> |
Javascript
<script> // Javascript program to find maximum // sum of digits in all divisors // of n numbers. // Function to get sum of digits function getSum(n) { let sum = 0; while (n != 0) { sum = sum + n % 10; n = Math.floor(n/10); } return sum; } // returns maximum sum function largestDigitSumdivisior(n) { let res = 0; for (let i = 1; i <= n; i++) // if i is factor of n // then push the divisor // in the stack. if (n % i == 0) res = Math.max(res, getSum(i)); return res; } // Driver Code let n = 14; document.write(largestDigitSumdivisior(n) + "<br>"); // This code is contributed by Mayank Tyagi </script> |
Output
7
Time Complexity: O(n*log10 (n))
Auxiliary Space: O(1)
An efficient approach will be to find the divisors in O(sqrt n). We follow the same steps as above, just iterate till sqrt(n) and get i and n/i as their divisors whenever n%i==0.
Below is the implementation of the above approach:
CPP
// CPP program to find // maximum sum of digits // in all divisors of n // numbers. #include <bits/stdc++.h> using namespace std; // Function to get // sum of digits int getSum(int n) { int sum = 0; while (n != 0) { sum = sum + n % 10; n = n / 10; } return sum; } // returns maximum sum int largestDigitSumdivisior(int n) { int res = 0; // traverse till sqrt(n) for (int i = 1; i <= sqrt(n); i++) // if i is factor of // n then push the // divisor in the stack. if (n % i == 0) { // check for both the divisors res = max(res, getSum(i)); res = max(res,getSum(n / i)); } return res; } // Driver Code int main() { int n = 14; cout << largestDigitSumdivisior(n) << endl; return 0; } |
Java
// Java program to find maximum // sum of digits in all divisors // of n numbers. import java.io.*; import java.math.*; class GFG { // Function to get // sum of digits static int getSum(int n) { int sum = 0; while (n != 0) { sum = sum + n % 10; n = n / 10; } return sum; } // returns maximum sum static int largestDigitSumdivisior(int n) { int res = 0; // traverse till sqrt(n) for (int i = 1; i <= Math.sqrt(n); i++) { // if i is factor of // n then push the // divisor in the stack. if (n % i == 0) { // check for both the divisors res = Math.max(res, getSum(i)); res = Math.max(res, getSum(n / i)); } } return res; } // Driver Code public static void main(String args[]) { int n = 14; System.out.println(largestDigitSumdivisior(n)); } } // This code is contributed // by Nikita Tiwari |
Python3
# Python 3 program # to find maximum # sum of digits in # all divisors of # n numbers import math # Function to get # sum of digits def getSum(n) : sm = 0 while (n != 0) : sm = sm + n % 10 n = n // 10 return sm # returns maximum sum def largestDigitSumdivisior(n) : res = 0 # traverse till sqrt(n) for i in range(1, (int)(math.sqrt(n))+1) : # if i is factor of n then # push the divisor in the # stack. if (n % i == 0) : # check for both the # divisors res = max(res, getSum(i)) res = max(res, getSum(n // i)) return res # Driver Code n = 14print(largestDigitSumdivisior(n)) #This code is contributed # by Nikita Tiwari |
C#
// C# program to find maximum sum // of digits in all divisors of n // numbers. using System; class GFG { // Function to get // sum of digits static int getSum(int n) { int sum = 0; while (n != 0) { sum = sum + n % 10; n = n / 10; } return sum; } // returns maximum sum static int largestDigitSumdivisior(int n) { int res = 0; // traverse till sqrt(n) for (int i = 1; i <= Math.Sqrt(n); i++) { // if i is factor of n then push the // divisor in the stack. if (n % i == 0) { // check for both the divisors res = Math.Max(res, getSum(i)); res = Math.Max(res, getSum(n / i)); } } return res; } // Driver Code public static void Main() { int n = 14; Console.WriteLine(largestDigitSumdivisior(n)); } } // This code is contributed by Vt_m |
PHP
<?php // PHP program to find maximum // sum of digits in all // divisors of n numbers // Function to get // sum of digits function getSum($n) { $sum = 0; while ($n != 0) { $sum = $sum + $n % 10; $n = $n / 10; } return $sum; } // returns maximum sum function largestDigitSumdivisior( $n) { $res = 0; // traverse till sqrt(n) for ($i = 1; $i <= sqrt($n); $i++) // if i is factor of // n then push the // divisor in the stack. if ($n % $i == 0) { // check for both the divisors $res = max($res, getSum($i)); $res = max($res, getSum($n / $i)); } return $res; } // Driver Code $n = 14; echo largestDigitSumdivisior($n); // This code is contributed by anuj_67. ?> |
Javascript
<script> // JavaScript program to find // maximum sum of digits // in all divisors of n // numbers. // Function to get // sum of digits function getSum(n) { var sum = 0; while (n != 0) { sum = sum + n % 10; n = parseInt(n / 10); } return sum; } // returns maximum sum function largestDigitSumdivisior(n) { var res = 0; // traverse till sqrt(n) for (var i = 1; i <= Math.sqrt(n); i++) // if i is factor of // n then push the // divisor in the stack. if (n % i == 0) { // check for both the divisors res = Math.max(res, getSum(i)); res = Math.max(res,getSum(n / i)); } return res; } // Driver Code var n = 14; document.write(largestDigitSumdivisior(n)); </script> |
Output
7
Time Complexity: O(sqrt(n) log n)
Auxiliary Space: O(1) as it is using constant space for variables
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



