Maximize length of subarray having equal elements by adding at most K

Given an array arr[] consisting of N positive integers and an integer K, which represents the maximum number that can be added to the array elements. The task is to maximize the length of the longest possible subarray of equal elements by adding at most K.
Examples:
Input: arr[] = {3, 0, 2, 2, 1}, k = 3
Output: 4
Explanation:Â
Step 1: Adding 2 to arr[1] modifies array to {3, 2, 2, 2, 1}
Step 2: Adding 1 to arr[4] modifies array to {3, 2, 2, 2, 2}
Therefore, answer will be 4 ({arr[1], …, arr[4]}).Input: arr[] = {1, 1, 1}, k = 7
Output: 3
Explanation:
All array elements are already equal. Therefore, the length is 3.
Approach: Follow the steps below to solve the problem:
- Sort the array arr[]. Then, use Binary Search to pick a possible value for the maximum indices having the same element.
- For each picked_value, use the Sliding Window technique to check if it is possible to make all elements equal for any subarray of size picked_value.
- Finally, print the longest possible length of subarray obtained.
Below is the implementation for the above approach:
C++14
// C++14 program for above approach #include <bits/stdc++.h>using namespace std;Â
// Function to check if a subarray of// length len consisting of equal elements// can be obtained or notbool check(vector<int> pSum, int len, int k,           vector<int> a){         // Sliding window    int i = 0;    int j = len;         while (j <= a.size())     {                 // Last element of the sliding window        // will be having the max size in the        // current window        int maxSize = a[j - 1];Â
        int totalNumbers = maxSize * len;Â
        // The current number of element in all        // indices of the current sliding window        int currNumbers = pSum[j] - pSum[i];Â
        // If the current number of the window,        // added to k exceeds totalNumbers        if (currNumbers + k >= totalNumbers)         {            return true;        }        else        {            i++;            j++;        }    }    return false;}Â
// Function to find the maximum number of// indices having equal elements after// adding at most k numbersint maxEqualIdx(vector<int> arr, int k){         // Sort the array in    // ascending order    sort(arr.begin(), arr.end());Â
    // Make prefix sum array    vector<int> prefixSum(arr.size());    prefixSum[1] = arr[0];Â
    for(int i = 1;             i < prefixSum.size() - 1; ++i)    {        prefixSum[i + 1] = prefixSum[i] +                                  arr[i];    }Â
    // Initialize variables    int max = arr.size();    int min = 1;    int ans = 1;Â
    while (min <= max)    {                 // Update mid        int mid = (max + min) / 2;Â
        // Check if any subarray        // can be obtained of length        // mid having equal elements        if (check(prefixSum, mid, k, arr))         {            ans = mid;            min = mid + 1;        }        else        {                         // Decrease max to mid            max = mid - 1;        }    }    return ans;}Â
// Driver Codeint main(){Â Â Â Â vector<int> arr = { 1, 1, 1 };Â Â Â Â int k = 7;Â
    // Function call    cout << (maxEqualIdx(arr, k));}Â
// This code is contributed by mohit kumar 29 |
Java
// Java program for above approachÂ
import java.util.*;Â
class GFG {Â
    // Function to find the maximum number of    // indices having equal elements after    // adding at most k numbers    public static int maxEqualIdx(int[] arr,                                  int k)    {        // Sort the array in        // ascending order        Arrays.sort(arr);Â
        // Make prefix sum array        int[] prefixSum            = new int[arr.length + 1];        prefixSum[1] = arr[0];Â
        for (int i = 1; i < prefixSum.length - 1;             ++i) {Â
            prefixSum[i + 1]                = prefixSum[i] + arr[i];        }Â
        // Initialize variables        int max = arr.length;        int min = 1;        int ans = 1;Â
        while (min <= max) {Â
            // Update mid            int mid = (max + min) / 2;Â
            // Check if any subarray            // can be obtained of length            // mid having equal elements            if (check(prefixSum, mid, k, arr)) {Â
                ans = mid;                min = mid + 1;            }            else {Â
                // Decrease max to mid                max = mid - 1;            }        }Â
        return ans;    }Â
    // Function to check if a subarray of    // length len consisting of equal elements    // can be obtained or not    public static boolean check(int[] pSum,                                int len, int k,                                int[] a)    {Â
        // Sliding window        int i = 0;        int j = len;        while (j <= a.length) {Â
            // Last element of the sliding window            // will be having the max size in the            // current window            int maxSize = a[j - 1];Â
            int totalNumbers = maxSize * len;Â
            // The current number of element in all            // indices of the current sliding window            int currNumbers = pSum[j] - pSum[i];Â
            // If the current number of the window,            // added to k exceeds totalNumbers            if (currNumbers + k >= totalNumbers) {Â
                return true;            }            else {                i++;                j++;            }        }        return false;    }Â
    // Driver Code    public static void main(String[] args)    {Â
        int[] arr = { 1, 1, 1 };        int k = 7;Â
        // Function call        System.out.println(maxEqualIdx(arr, k));    }} |
Python3
# Python3 program for above approach   # Function to find the maximum number of# indices having equal elements after# adding at most k numbersdef maxEqualIdx(arr, k):         # Sort the array in    # ascending order    arr.sort()         # Make prefix sum array    prefixSum = [0] * (len(arr) + 1)    prefixSum[1] = arr[0]      for i in range(1, len(prefixSum) - 1 ,1):        prefixSum[i + 1] = prefixSum[i] + arr[i]       # Initialize variables    max = len(arr)    min = 1    ans = 1      while (min <= max):                 # Update mid        mid = (max + min) // 2          # Check if any subarray        # can be obtained of length        # mid having equal elements        if (check(prefixSum, mid, k, arr)):            ans = mid            min = mid + 1        else:                         # Decrease max to mid            max = mid - 1         return ansÂ
# Function to check if a subarray of# length len consisting of equal elements# can be obtained or notdef check(pSum, lenn, k, a):         # Sliding window    i = 0    j = lenn         while (j <= len(a)):               # Last element of the sliding window        # will be having the max size in the        # current window        maxSize = a[j - 1]          totalNumbers = maxSize * lenn          # The current number of element in all        # indices of the current sliding window        currNumbers = pSum[j] - pSum[i]          # If the current number of the window,        # added to k exceeds totalNumbers        if (currNumbers + k >= totalNumbers):            return True             else:            i += 1            j += 1         return FalseÂ
# Driver CodeÂ
arr = [ 1, 1, 1 ] k = 7Â Â # Function callprint(maxEqualIdx(arr, k))Â
# This code is contributed by code_hunt |
C#
// C# program for // the above approachusing System;class GFG{Â
// Function to find the maximum number of// indices having equal elements after// adding at most k numberspublic static int maxEqualIdx(int[] arr,                              int k){  // Sort the array in  // ascending order  Array.Sort(arr);Â
  // Make prefix sum array  int[] prefixSum = new int[arr.Length + 1];  prefixSum[1] = arr[0];Â
  for (int i = 1;            i < prefixSum.Length - 1; ++i)   {    prefixSum[i + 1] = prefixSum[i] + arr[i];  }Â
  // Initialize variables  int max = arr.Length;  int min = 1;  int ans = 1;Â
  while (min <= max)   {    // Update mid    int mid = (max + min) / 2;Â
    // Check if any subarray    // can be obtained of length    // mid having equal elements    if (check(prefixSum, mid, k, arr))     {      ans = mid;      min = mid + 1;    }    else    {      // Decrease max to mid      max = mid - 1;    }  }  return ans;}Â
// Function to check if a subarray of// length len consisting of equal elements// can be obtained or notpublic static bool check(int[] pSum,                         int len, int k,                         int[] a){  // Sliding window  int i = 0;  int j = len;  while (j <= a.Length)   {    // Last element of the sliding window    // will be having the max size in the    // current window    int maxSize = a[j - 1];Â
    int totalNumbers = maxSize * len;Â
    // The current number of element in all    // indices of the current sliding window    int currNumbers = pSum[j] - pSum[i];Â
    // If the current number of the window,    // added to k exceeds totalNumbers    if (currNumbers + k >= totalNumbers)     {      return true;    }    else    {      i++;      j++;    }  }  return false;}Â
// Driver Codepublic static void Main(String[] args){Â Â int[] arr = {1, 1, 1};Â Â int k = 7;Â
  // Function call  Console.WriteLine(maxEqualIdx(arr, k));}}Â
// This code is contributed by Rajput-Ji |
Javascript
<script>Â
// Javascript program to implement// the above approachÂ
    // Function to find the maximum number of    // indices having equal elements after    // adding at most k numbers    function maxEqualIdx(arr, k)    {        // Sort the array in        // ascending order        arr.sort();Â
        // Make prefix sum array        let prefixSum            = new Array(arr.length + 1).fill(0);         prefixSum[1] = arr[0];Â
        for (let i = 1; i < prefixSum.length - 1;             ++i) {Â
            prefixSum[i + 1]                = prefixSum[i] + arr[i];        }Â
        // Initialize variables        let max = arr.length;        let min = 1;        let ans = 1;Â
        while (min <= max) {Â
            // Update mid            let mid = Math.floor((max + min) / 2);Â
            // Check if any subarray            // can be obtained of length            // mid having equal elements            if (check(prefixSum, mid, k, arr)) {Â
                ans = mid;                min = mid + 1;            }            else {Â
                // Decrease max to mid                max = mid - 1;            }        }Â
        return ans;    }Â
    // Function to check if a subarray of    // length len consisting of equal elements    // can be obtained or not    function check(pSum, len, k, a)    {Â
        // Sliding window        let i = 0;        let j = len;        while (j <= a.length) {Â
            // Last element of the sliding window            // will be having the max size in the            // current window            let maxSize = a[j - 1];Â
            let totalNumbers = maxSize * len;Â
            // The current number of element in all            // indices of the current sliding window            let currNumbers = pSum[j] - pSum[i];Â
            // If the current number of the window,            // added to k exceeds totalNumbers            if (currNumbers + k >= totalNumbers) {Â
                return true;            }            else {                i++;                j++;            }        }        return false;    }Â
// Driver CodeÂ
        let arr = [ 1, 1, 1 ];        let k = 7;Â
        // Function call        document.write(maxEqualIdx(arr, k));Â
</script> |
3
Â
Time Complexity: O(N * log N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



