Maximize sum of K elements selected from a Matrix such that each selected element must be preceded by selected row elements

Given a 2D array arr[][] of size N * M, and an integer K, the task is to select K elements with maximum possible sum such that if an element arr[i][j] is selected, then all the elements from the ith row present before the jth column needs to be selected.
Examples:
Input: arr[][] = {{10, 10, 100, 30}, {80, 50, 10, 50}}, K = 5
Output: 250
Explanation:
Selecting first 3 elements from the first row, sum = 10 + 10 + 100 = 120
Selecting first 2 elements from the second row, sum = 80 + 50 = 130
Therefore, the maximum sum = 120 + 130 = 250.Input: arr[][] = {{30, 10, 110, 13}, {810, 152, 12, 5}, {124, 24, 54, 124}}, K = 6
Output: 1288
Explanation:
Selecting first 2 elements from the second row, sum = 810 + 152 = 962
Selecting all 4 elements from the third row, sum = 124 + 24 + 54 + 124 = 326
Therefore, the maximum sum = 962 + 326 = 1288
Naive Approach: The simplest approach to solve the problem is to generate all possible subsets of size K from the given matrix based on specified constraint and calculate the maximum sum possible from these subsets.Â
Time Complexity: O((N*M)!/(K!)*(N*M – K)!)
Auxiliary Space: O(1)
Efficient Approach: The above approach can be optimized by using Dynamic Programming. The idea is to find the maximum sum of selecting i elements till the jth row of the 2D array arr[][]. The auxiliary array dp[i][j + 1] stores the maximum sum of selecting i elements till jth row of matrix arr[][]. Follow the steps below to solve the problem:
- Initialize a dp[][] table of size (K+1)*(N+1) and initialize dp[0][i] as 0, as no elements have sum equal to 0.
- Initialize dp[i][0] as 0, as there are no elements to be selected.
- Iterate over the range [0, K] using two nested loops and [0, N] using the variables i and j respectively:
- Initialize a variable, say sum as 0, to keep track of the cumulative sum of elements in the jth row of arr[][].
- Initialize maxSum as dp[i][j], if no item needs to be selected from jth row of arr[][].
- Iterate with k as 1 until k > M or k > i:
- Increment sum += buy[j][k – 1].
- Store the maximum of existing maxSum and (sum + dp[i – k][j]) in maxSum.
- Store dp[i][j + 1] as the value of maxSum.
- Print the value dp[K][N] as the maximum sum of K elements till (N – 1)th row of matrix arr[][].
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <iostream>using namespace std;Â
// Function to return the maximum// of two elementsint max(int a, int b){Â Â Â Â return a > b ? a : b;}Â
// Function to find the maximum sum// of selecting K elements from// the given 2D array arr[][]int maximumsum(int arr[][4], int K,               int N, int M){    int sum = 0, maxSum;    int i, j, k;Â
    // dp table of size (K+1)*(N+1)    int dp[K + 1][N + 1];Â
    // Initialize dp[0][i] = 0    for (i = 0; i <= N; i++)        dp[0][i] = 0;Â
    // Initialize dp[i][0] = 0    for (i = 0; i <= K; i++)        dp[i][0] = 0;Â
    // Selecting i elements    for (i = 1; i <= K; i++) {Â
        // Select i elements till jth row        for (j = 0; j < N; j++) {Â
            // dp[i][j+1] is the maximum            // of selecting i elements till            // jth rowÂ
            // sum = 0, to keep track of            // cumulative elements sum            sum = 0;            maxSum = dp[i][j];Â
            // Traverse arr[j][k] until            // number of elements until k>i            for (k = 1; k <= M && k <= i; k++) {Â
                // Select arr[j][k - 1]th item                sum += arr[j][k - 1];Â
                maxSum                    = max(maxSum,                          sum + dp[i - k][j]);            }Â
            // Store the maxSum in dp[i][j+1]            dp[i][j + 1] = maxSum;        }    }Â
    // Return the maximum sum    return dp[K][N];}Â
// Driver Codeint main(){    int arr[][4] = { { 10, 10, 100, 30 },                     { 80, 50, 10, 50 } };Â
    int N = 2, M = 4;    int K = 5;Â
    // Function Call    cout << maximumsum(arr, K, N, M);Â
    return 0;} |
Java
// Java program for the above approach import java.util.*;    class GFG{    // Function to return the maximum// of two elementsstatic int max(int a, int b){    return a > b ? a : b;}  // Function to find the maximum sum// of selecting K elements from// the given 2D array arr[][]static int maximumsum(int arr[][], int K,                      int N, int M){    int sum = 0, maxSum;    int i, j, k;      // dp table of size (K+1)*(N+1)    int[][] dp = new int[K + 1][N + 1];      // Initialize dp[0][i] = 0    for(i = 0; i <= N; i++)        dp[0][i] = 0;      // Initialize dp[i][0] = 0    for(i = 0; i <= K; i++)        dp[i][0] = 0;      // Selecting i elements    for(i = 1; i <= K; i++)    {                 // Select i elements till jth row        for(j = 0; j < N; j++)        {                         // dp[i][j+1] is the maximum            // of selecting i elements till            // jth row              // sum = 0, to keep track of            // cumulative elements sum            sum = 0;            maxSum = dp[i][j];              // Traverse arr[j][k] until            // number of elements until k>i            for(k = 1; k <= M && k <= i; k++)            {                                 // Select arr[j][k - 1]th item                sum += arr[j][k - 1];                  maxSum = Math.max(maxSum,                                  sum + dp[i - k][j]);            }              // Store the maxSum in dp[i][j+1]            dp[i][j + 1] = maxSum;        }    }      // Return the maximum sum    return dp[K][N];}    // Driver Codepublic static void main(String[] args){    int arr[][] = { { 10, 10, 100, 30 },                     { 80, 50, 10, 50 } };      int N = 2, M = 4;    int K = 5;      // Function Call    System.out.print(maximumsum(arr, K, N, M));}}Â
// This code is contributed by susmitakundugoaldanga |
Python3
# Python program for the above approachimport math;Â
# Function to return the maximum# of two elementsdef max(a, b):Â Â Â Â if(a > b):Â Â Â Â Â Â Â Â return a;Â Â Â Â else:Â Â Â Â Â Â Â Â return b;Â
# Function to find the maximum sum# of selecting K elements from# the given 2D array arrdef maximumsum(arr, K, N, M):Â Â Â Â sum = 0;Â Â Â Â maxSum = 0;Â
    # dp table of size (K+1)*(N+1)    dp = [[0 for i in range(N + 1)] for j in range(K + 1)]Â
    # Initialize dp[0][i] = 0    for i in range(0, N + 1):        dp[0][i] = 0;Â
    # Initialize dp[i][0] = 0    for i in range(0, K + 1):        dp[i][0] = 0;Â
    # Selecting i elements    for i in range(1, K + 1):Â
        # Select i elements till jth row        for j in range(0, N):Â
            # dp[i][j+1] is the maximum            # of selecting i elements till            # jth rowÂ
            # sum = 0, to keep track of            # cumulative elements sum            sum = 0;            maxSum = dp[i][j];Â
            # Traverse arr[j][k] until            # number of elements until k>i            for k in range(1, i + 1):                if(k > M):                    break;                                     # Select arr[j][k - 1]th item                sum += arr[j][k - 1];Â
                maxSum = max(maxSum, sum + dp[i - k][j]);Â
            # Store the maxSum in dp[i][j+1]            dp[i][j + 1] = maxSum;Â
    # Return the maximum sum    return dp[K][N];Â
# Driver Codeif __name__ == '__main__':Â Â Â Â arr = [[10, 10, 100, 30], [80, 50, 10, 50]];Â
    N = 2;    M = 4;    K = 5;Â
    # Function Call    print(maximumsum(arr, K, N, M));Â
Â
    # This code is contributed by 29AjayKumar |
C#
// C# program for the above approach using System;Â
class GFG{    // Function to return the maximum// of two elementsstatic int max(int a, int b){    return a > b ? a : b;}  // Function to find the maximum sum// of selecting K elements from// the given 2D array [,]arrstatic int maximumsum(int [,]arr, int K,                      int N, int M){    int sum = 0, maxSum;    int i, j, k;         // dp table of size (K+1)*(N+1)    int[,] dp = new int[K + 1, N + 1];      // Initialize dp[0,i] = 0    for(i = 0; i <= N; i++)        dp[0, i] = 0;      // Initialize dp[i,0] = 0    for(i = 0; i <= K; i++)        dp[i, 0] = 0;      // Selecting i elements    for(i = 1; i <= K; i++)    {                 // Select i elements till jth row        for(j = 0; j < N; j++)        {                         // dp[i,j+1] is the maximum            // of selecting i elements till            // jth row              // sum = 0, to keep track of            // cumulative elements sum            sum = 0;            maxSum = dp[i, j];              // Traverse arr[j,k] until            // number of elements until k>i            for(k = 1; k <= M && k <= i; k++)            {                                 // Select arr[j,k - 1]th item                sum += arr[j, k - 1];                  maxSum = Math.Max(maxSum,                                  sum + dp[i - k, j]);            }              // Store the maxSum in dp[i,j+1]            dp[i, j + 1] = maxSum;        }    }      // Return the maximum sum    return dp[K, N];}    // Driver Codepublic static void Main(String[] args){    int [,]arr = { { 10, 10, 100, 30 },                    { 80, 50, 10, 50 } };      int N = 2, M = 4;    int K = 5;      // Function Call    Console.Write(maximumsum(arr, K, N, M));}}Â
// This code is contributed by Amit Katiyar |
Javascript
<script>// Javascript program to implement// the above approachÂ
// Function to return the maximum// of two elementsfunction max(a, b){    return a > b ? a : b;}   // Function to find the maximum sum// of selecting K elements from// the given 2D array arr[][]function maximumsum(arr, K,                      N, M){    let sum = 0, maxSum;    let i, j, k;       // dp table of size (K+1)*(N+1)    let dp = new Array(K + 1);         // Loop to create 2D array using 1D array    for ( i = 0; i < dp.length; i++) {        dp[i] = new Array(2);    }       // Initialize dp[0][i] = 0    for(i = 0; i <= N; i++)        dp[0][i] = 0;       // Initialize dp[i][0] = 0    for(i = 0; i <= K; i++)        dp[i][0] = 0;       // Selecting i elements    for(i = 1; i <= K; i++)    {                  // Select i elements till jth row        for(j = 0; j < N; j++)        {                          // dp[i][j+1] is the maximum            // of selecting i elements till            // jth row               // sum = 0, to keep track of            // cumulative elements sum            sum = 0;            maxSum = dp[i][j];               // Traverse arr[j][k] until            // number of elements until k>i            for(k = 1; k <= M && k <= i; k++)            {                                  // Select arr[j][k - 1]th item                sum += arr[j][k - 1];                   maxSum = Math.max(maxSum,                                  sum + dp[i - k][j]);            }               // Store the maxSum in dp[i][j+1]            dp[i][j + 1] = maxSum;        }    }       // Return the maximum sum    return dp[K][N];}Â
// Driver code    let arr = [[ 10, 10, 100, 30 ],                     [ 80, 50, 10, 50 ]];       let N = 2, M = 4;    let K = 5;       // Function Call    document.write(maximumsum(arr, K, N, M));   // This code is contributed by souravghosh0416.</script> |
250
Â
Time Complexity: O(K*N*M)
Auxiliary Space: O(K*N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



