Count all possible unique sum of series K, K+1, K+2, K+3, K+4, …, K+N

Given a number N and for any number K for a series formed as K, K + 1, K + 2, K + 3, K + 4, ……., K + N. The task is to find the number of unique sums that can be obtained by adding two or more integers from the series of N + 1 integers.
Examples:
Input: N = 3
Output: 10
Explanation:
The possible unique combinations are:
(K) + (K + 1) = 2*K + 1
(K) + (K + 2) = 2*K + 2
(K) + (K + 3) = 2*K + 3
(K + 1) + (K + 3) = 2*K + 4
(K + 2) + (K + 3) = 2*K + 5
(K) + (K + 1) + (K + 2) = 3*K + 3
(K) + (K + 1) + (K + 3) = 3*K + 4
(K) + (K + 2) + (K + 3) = 3*K + 5
(K + 1) + (K + 2) + (K + 3) = 3*K + 6
(K) + (K + 1) + (K + 2) + (K + 3) = 4*K + 6
So in total, there are 10 unique ways.
Input: N = 4
Output: 20
Explanation:
The possible unique combinations are 20 in number.
Approach: The following observations are to be made:
- Since K is number the only significance it has is that two subsets with different sizes cannot have the same sum.
- A unique sum can be obtained from the minimum possible sum of the subset to the maximum possible sum of subset having size as X where (2 ? X ? (N + 1)).
For Example:N = 4
The Series is = {K, K + 1, K + 2, K + 3, K + 4}
For K = 2, minimum_sum = (K, K + 1) = 2*K + 1
and maximum_sum = (K + 3, K + 4) = 2*K + 7
The maximum distinct sums possible with K = 2 are (maximum_sum – minimum_sum + 1) = (7 – 1 + 1) = 7.
Follow the steps below to solve the problem:
- Initialize two arrays array fsum[] and rsum[] each of size N + 1 to 0.
- For each element of both the arrays fsum[] and rsum[], update fsum[i] with ar[i] + fsum[i – 1] and rsum[i] with ar[i] + fsum[i + 1].
- Initialize a variable ans to 1 that stores the count of different possible sums of the given series.
- For each possible subset size X, where (2 ? X ? (N + 1)), add the value 1 + rsum[n + 1 – k] + fsum[k] to ans.
- The value of ans is the required answer hence return it.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;// Function to count the unique sumint count_unique_sum(int n){ int i, ar[n + 1], fsum[n + 1]; int rsum[n + 1], ans = 1; // Initialize array fsum[] with 0 memset(fsum, 0, sizeof fsum); // Initialize array rsum[] with 0 memset(rsum, 0, sizeof rsum); for (i = 0; i <= n; i++) { ar[i] = i; } // Set fsum[0] as ar[0] fsum[0] = ar[0]; // Set rsum[0] as ar[n] rsum[n] = ar[n]; // For each i update fsum[i] with // ar[i] + fsum[i - 1] for (i = 1; i <= n; i++) { fsum[i] = ar[i] + fsum[i - 1]; } // For each i from n-1, update // rsum[i] with ar[i] + fsum[i + 1] for (i = n - 1; i >= 0; i--) { rsum[i] = ar[i] + rsum[i + 1]; } // K represent size of subset as // explained above for (int k = 2; k <= n; k++) { // Using above relation ans += 1 + rsum[n + 1 - k] - fsum[k - 1]; } // Return the result return ans;}// Driver Codeint main(){ // Given a number N int N = 4; // Function Call cout << count_unique_sum(N); return 0;} |
Java
// Java program for the above approachimport java.util.*;class GFG{ // Function to count the unique sumstatic int count_unique_sum(int n){ int i; int ar[] = new int[n + 1]; int fsum[] = new int[n + 1]; int rsum[] = new int[n + 1]; int ans = 1; // Initialize array fsum[] with 0 Arrays.fill(fsum, 0); // Initialize array rsum[] with 0 Arrays.fill(rsum, 0); for (i = 0; i <= n; i++) { ar[i] = i; } // Set fsum[0] as ar[0] fsum[0] = ar[0]; // Set rsum[0] as ar[n] rsum[n] = ar[n]; // For each i update fsum[i] with // ar[i] + fsum[i - 1] for (i = 1; i <= n; i++) { fsum[i] = ar[i] + fsum[i - 1]; } // For each i from n-1, update // rsum[i] with ar[i] + fsum[i + 1] for (i = n - 1; i >= 0; i--) { rsum[i] = ar[i] + rsum[i + 1]; } // K represent size of subset as // explained above for (int k = 2; k <= n; k++) { // Using above relation ans += 1 + rsum[n + 1 - k] - fsum[k - 1]; } // Return the result return ans;} // Driver Codepublic static void main(String[] args){ // Given a number N int N = 4; // Function Call System.out.print(count_unique_sum(N));}}// This code is contributed by rock__cool |
Python3
# Python3 program for the above approach# Function to count the unique sumdef count_unique_sum(n): ar = [0] * (n + 1) fsum = [0] * (n + 1) rsum = [0] * (n + 1) ans = 1 for i in range(0, n + 1): ar[i] = i # Set fsum[0] as ar[0] fsum[0] = ar[0] # Set rsum[0] as ar[n] rsum[n] = ar[n] # For each i update fsum[i] with # ar[i] + fsum[i - 1] for i in range(1, n + 1): fsum[i] = ar[i] + fsum[i - 1] # For each i from n-1, update # rsum[i] with ar[i] + fsum[i + 1] for i in range(n - 1, -1, -1): rsum[i] = ar[i] + rsum[i + 1] # K represent size of subset as # explained above for k in range(2, n + 1): # Using above relation ans += (1 + rsum[n + 1 - k] - fsum[k - 1]) # Return the result return ans# Driver Code# Given a number NN = 4# Function callprint(count_unique_sum(N))# This code is contributed by sanjoy_62 |
C#
// C# program for the above approachusing System;class GFG{ // Function to count the unique sumstatic int count_unique_sum(int n){ int i; int []ar = new int[n + 1]; int []fsum = new int[n + 1]; int []rsum = new int[n + 1]; int ans = 1; for (i = 0; i <= n; i++) { ar[i] = i; } // Set fsum[0] as ar[0] fsum[0] = ar[0]; // Set rsum[0] as ar[n] rsum[n] = ar[n]; // For each i update fsum[i] with // ar[i] + fsum[i - 1] for (i = 1; i <= n; i++) { fsum[i] = ar[i] + fsum[i - 1]; } // For each i from n-1, update // rsum[i] with ar[i] + fsum[i + 1] for (i = n - 1; i >= 0; i--) { rsum[i] = ar[i] + rsum[i + 1]; } // K represent size of subset as // explained above for (int k = 2; k <= n; k++) { // Using above relation ans += 1 + rsum[n + 1 - k] - fsum[k - 1]; } // Return the result return ans;} // Driver Codepublic static void Main(String[] args){ // Given a number N int N = 4; // Function Call Console.Write(count_unique_sum(N));}}// This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript program for the above approach // Function to count the unique sum function count_unique_sum(n) { let i; let ans = 1; let ar = new Array(n + 1); let fsum = new Array(n + 1); let rsum = new Array(n + 1); // Initialize array fsum[] with 0 fsum.fill(0); // Initialize array rsum[] with 0 rsum.fill(0); for (i = 0; i <= n; i++) { ar[i] = i; } // Set fsum[0] as ar[0] fsum[0] = ar[0]; // Set rsum[0] as ar[n] rsum[n] = ar[n]; // For each i update fsum[i] with // ar[i] + fsum[i - 1] for (i = 1; i <= n; i++) { fsum[i] = ar[i] + fsum[i - 1]; } // For each i from n-1, update // rsum[i] with ar[i] + fsum[i + 1] for (i = n - 1; i >= 0; i--) { rsum[i] = ar[i] + rsum[i + 1]; } // K represent size of subset as // explained above for (let k = 2; k <= n; k++) { // Using above relation ans += 1 + rsum[n + 1 - k] - fsum[k - 1]; } // Return the result return ans; } // Given a number N let N = 4; // Function Call document.write(count_unique_sum(N));//This code is contributed by suresh07.</script> |
20
Time Complexity: O(N)
Auxiliary Space: O(N), since N extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



