Count numbers present in partitions of N

Given an integer N, the task is to count the numbers in ordered integer partitions of N.
Examples:
Input: N = 3
Output: 8
Integer partitions of N(=3) are {{1 + 1 + 1}, {1 + 2}, {2 + 1}, {3}}.
Numbers in integer partition of N are:{1, 1, 1, 1, 2, 2, 1, 3}
Therefore, the count of numbers in integer partitions of N(=3) is 8.Input: N = 4
Output: 20
Approach: The problem can be solved based on the following observations:
Count of ways to partition N into exactly k partitions =
Therefore, the count of numbers in ordered integer partitions of N is
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std;// Function to count of numbers in// ordered partitions of Nint CtOfNums(int N){ // Stores count the numbers in // ordered integer partitions int res = (N + 1) * (1 << (N - 2)); return round(res);} // Driver Codeint main(){ int N = 3; cout << CtOfNums(N); }// This code is contributed by code_hunt |
Java
// Java program to implement // the above approach import java.io.*; class GFG{ // Function to count of numbers in// ordered partitions of Nstatic int CtOfNums(int N){ // Stores count the numbers in // ordered integer partitions int res = (N + 1) * (1 << (N - 2)); return Math.round(res);} // Driver Codepublic static void main (String[] args) { int N = 3; System.out.print(CtOfNums(N));}}// This code is contributed by code_hunt |
Python3
# Python3 program to implement# the above approach # Function to count of numbers in# ordered partitions of Ndef CtOfNums(N): # Stores count the numbers in # ordered integer partitions res = (N + 1) * (1<<(N - 2)) return round(res) # Driver code if __name__ == '__main__': N = 3 print(CtOfNums(N)) |
C#
// C# program to implement // the above approach using System;class GFG{ // Function to count of numbers in// ordered partitions of Nstatic int CtOfNums(int N){ // Stores count the numbers in // ordered integer partitions double res = (N + 1) * (1 << (N - 2)); return (int)Math.Round(res);} // Driver Codepublic static void Main () { int N = 3; Console.Write(CtOfNums(N));}}// This code is contributed by code_hunt |
Javascript
<script>// Javascript program to implement // the above approach // Function to count of numbers in// ordered partitions of Nfunction CtOfNums(N){ // Stores count the numbers in // ordered integer partitions var res = (N + 1) * (1 << (N - 2)); return Math.round(res);} // Driver Codevar N = 3;document.write(CtOfNums(N)); </script> |
Output:
8
Time Complexity: O(log2N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




