Longest Subarray having strictly positive XOR

Given an array arr[] of N non-negative integers. The task is to find the length of the longest sub-array such that XOR of all the elements of this sub-array is strictly positive. If no such sub-array exists then print -1
Examples:
Input: arr[] = {1, 1, 1, 1}
Output: 3
Take sub-array[0:2] = {1, 1, 1}
Xor of this sub-array is equal to 1.Input: arr[] = {0, 1, 5, 19}
Output: 4
Approach:
- If the XOR of the complete array is positive, then answer is equal to N.
- If all the elements are zeroes then the answer is -1 as it is impossible to get strictly positive XOR.
- Otherwise, let’s say that index of the first positive number is l and the last positive number is r.
- Now XOR of all the elements of the index range [l, r] must be zero as elements before l and after r are 0s which will not contribute to the XOR value and the XOR of the original array was 0.
- Consider the sub-arrays A1, A1, …, Ar-1 and Al+1, Al+2, …, AN.
- The first subarray would have XOR value equal to A[r] and second, would have an XOR value A[l] which is positive.
- Return the length of the larger sub-array among these two sub-arrays.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to return the length of the// longest sub-array having positive XORint StrictlyPositiveXor(int A[], int N){ // To store the XOR // of all the elements int allxor = 0; // To check if all the // elements of the array are 0s bool checkallzero = true; for (int i = 0; i < N; i += 1) { // Take XOR of all the elements allxor ^= A[i]; // If any positive value is found // the make the checkallzero false if (A[i] > 0) checkallzero = false; } // If complete array is the answer if (allxor != 0) return N; // If all elements are equal to zero if (checkallzero) return -1; // Initialize l and r int l = N, r = -1; for (int i = 0; i < N; i += 1) { // First positive value of the array if (A[i] > 0) { l = i + 1; break; } } for (int i = N - 1; i >= 0; i -= 1) { // Last positive value of the array if (A[i] > 0) { r = i + 1; break; } } // Maximum length among // these two subarrays return max(N - l, r - 1);}// Driver codeint main(){ int A[] = { 1, 0, 0, 1 }; int N = sizeof(A) / sizeof(A[0]); cout << StrictlyPositiveXor(A, N); return 0;} |
Java
// Java implementation of the approachimport java.io.*;class GFG {// Function to return the length of the// longest sub-array having positive XORstatic int StrictlyPositiveXor(int []A, int N){ // To store the XOR // of all the elements int allxor = 0; // To check if all the // elements of the array are 0s boolean checkallzero = true; for (int i = 0; i < N; i += 1) { // Take XOR of all the elements allxor ^= A[i]; // If any positive value is found // the make the checkallzero false if (A[i] > 0) checkallzero = false; } // If complete array is the answer if (allxor != 0) return N; // If all elements are equal to zero if (checkallzero) return -1; // Initialize l and r int l = N, r = -1; for (int i = 0; i < N; i += 1) { // First positive value of the array if (A[i] > 0) { l = i + 1; break; } } for (int i = N - 1; i >= 0; i -= 1) { // Last positive value of the array if (A[i] > 0) { r = i + 1; break; } } // Maximum length among // these two subarrays return Math.max(N - l, r - 1);}// Driver codepublic static void main (String[] args) { int A[] = { 1, 0, 0, 1 }; int N = A.length; System.out.print(StrictlyPositiveXor(A, N));}}// This code is contributed by anuj_67.. |
Python3
# Python3 implementation of the approach # Function to return the length of the # longest sub-array having positive XOR def StrictlyPositiveXor(A, N) : # To store the XOR # of all the elements allxor = 0; # To check if all the # elements of the array are 0s checkallzero = True; for i in range(N) : # Take XOR of all the elements allxor ^= A[i]; # If any positive value is found # the make the checkallzero false if (A[i] > 0) : checkallzero = False; # If complete array is the answer if (allxor != 0) : return N; # If all elements are equal to zero if (checkallzero) : return -1; # Initialize l and r l = N; r = -1; for i in range(N) : # First positive value of the array if (A[i] > 0) : l = i + 1; break; for i in range(N - 1, -1, -1) : # Last positive value of the array if (A[i] > 0) : r = i + 1; break; # Maximum length among # these two subarrays return max(N - l, r - 1); # Driver code if __name__ == "__main__" : A= [ 1, 0, 0, 1 ]; N = len(A); print(StrictlyPositiveXor(A, N)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approachusing System;class GFG {// Function to return the length of the// longest sub-array having positive XORstatic int StrictlyPositiveXor(int []A, int N){ // To store the XOR // of all the elements int allxor = 0; // To check if all the // elements of the array are 0s bool checkallzero = true; for (int i = 0; i < N; i += 1) { // Take XOR of all the elements allxor ^= A[i]; // If any positive value is found // the make the checkallzero false if (A[i] > 0) checkallzero = false; } // If complete array is the answer if (allxor != 0) return N; // If all elements are equal to zero if (checkallzero) return -1; // Initialize l and r int l = N, r = -1; for (int i = 0; i < N; i += 1) { // First positive value of the array if (A[i] > 0) { l = i + 1; break; } } for (int i = N - 1; i >= 0; i -= 1) { // Last positive value of the array if (A[i] > 0) { r = i + 1; break; } } // Maximum length among // these two subarrays return Math.Max(N - l, r - 1);}// Driver codepublic static void Main () { int []A = { 1, 0, 0, 1 }; int N = A.Length; Console.WriteLine(StrictlyPositiveXor(A, N));}}// This code is contributed by anuj_67.. |
Javascript
<script>// Javascript implementation of the approach// Function to return the length of the// longest sub-array having positive XORfunction StrictlyPositiveXor(A, N){ // To store the XOR // of all the elements let allxor = 0; // To check if all the // elements of the array are 0s let checkallzero = true; for (let i = 0; i < N; i += 1) { // Take XOR of all the elements allxor ^= A[i]; // If any positive value is found // the make the checkallzero false if (A[i] > 0) checkallzero = false; } // If complete array is the answer if (allxor != 0) return N; // If all elements are equal to zero if (checkallzero) return -1; // Initialize l and r let l = N, r = -1; for (let i = 0; i < N; i += 1) { // First positive value of the array if (A[i] > 0) { l = i + 1; break; } } for (let i = N - 1; i >= 0; i -= 1) { // Last positive value of the array if (A[i] > 0) { r = i + 1; break; } } // Maximum length among // these two subarrays return Math.max(N - l, r - 1);}// Driver code let A = [ 1, 0, 0, 1 ]; let N = A.length; document.write(StrictlyPositiveXor(A, N));</script> |
Output
3
Time Complexity: O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



