Implement sigmoid function using Numpy

With the help of Sigmoid activation function, we are able to reduce the loss during the time of training because it eliminates the gradient problem in machine learning model while training.




# Import matplotlib, numpy and math
import matplotlib.pyplot as plt
import numpy as np
import math
  
x = np.linspace(-10, 10, 100)
z = 1/(1 + np.exp(-x))
  
plt.plot(x, z)
plt.xlabel("x")
plt.ylabel("Sigmoid(X)")
  
plt.show()


Output :

Example #1 :




# Import matplotlib, numpy and math
import matplotlib.pyplot as plt
import numpy as np
import math
  
x = np.linspace(-100, 100, 200)
z = 1/(1 + np.exp(-x))
  
plt.plot(x, z)
plt.xlabel("x")
plt.ylabel("Sigmoid(X)")
  
plt.show()


Output :

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button